數學ln計算

2013-05-08 9:06 pm
125/225=1-e^-2k/1-e^-8k

答案是0.33 但我都一直算不到這答案

煩請詳細列出解題過程 謝謝!
更新1:

http://imgur.com/Yd1F8u9 感恩

回答 (3)

2013-05-08 10:25 pm
✔ 最佳答案
125/225=(1-e^-2k)/(1-e^-8k)
Sol
Set x=e^(-2k)
x^4=e^(-8k)
125/225=(1-x)/(1-x^4)
5/9=(1-x)/(1-x^4)
9-9x=5-5x^4
5x^4-9x+4=0
(5x^4-5x^3)+(5x^3-5x^2)+(5x^2-5x)-(4x-4)=0
(x-1)(5x^3+5x^2+5x-4)=0
5x^3+5x^2+5x-4
=(5x^3-2.36333x^2)+(7.36333x^2-3.4803957x)+(8.4803957x-4)
=(5x^2+7.36333x+8.4803957)(x-0.472666)
D=7.36333^2-4*5*8.4803957=-115.38929
So
5x^4-9x+4=0
(x-1)(x-0.472666)(5x^2+7.36333x+8.4803957)=0
有2實根1和0.472666
(1) x=1 (分母為0不合)
(2) x=0.472666
0.472666=e^(-2k)
-2k=ln(0.472666)
-2k=-0.749366
k=0.374683


2013-05-09 10:29 pm
Let x = exp(-2k)

125/225 = (1 - x)/(1 - x^4) = 1/(1 + x)(1 + x^2)

5/9 = 1/(1 + x)(1 + x^2)

5(1 + x)(1 + x^2) = 9

5(1 + x^2 + x + x^3) = 9

5x^3 + 5x^2 + 5x - 4 = 0

x = 0.47202

exp(-2k) = 0.47202

k = 0.3754
2013-05-08 9:40 pm
....恕我看不懂你的題目@@
(拍照直接傳應該會好點 = =)
但 還記得高中的log嗎?
ln(X)=以e為底的log e (x)
但願能幫到你@@


收錄日期: 2021-04-27 19:55:23
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130508000010KK01764

檢視 Wayback Machine 備份