✔ 最佳答案
(1/6)πh[a² + b² + (a + b)²] = (1/3)π[b²(h + x) - a²x]
6 * (1/6)πh[a² + b² + (a + b)²] = 6 * (1/3)π[b²(h + x) - a²x]
πh[a² + b² + (a + b)²] = 2π[b²(h + x) - a²x]
h[a² + b² + (a² + 2ab + b²)] = 2[(hb² + b²x) - a²x]
h(2a² + 2ab + 2b²) = 2(hb² + b²x - a²x)
2(ha² + hab + hb²) = 2(hb² + b²x - a²x)
ha² + hab + hb² = hb² + b²x - a²x
ha² + hab = b²x - a²x
ha(a + b) = x(b² - a²)
ha(b + a) = x(b + a)(b - a)
ha = x(b - a)
ha = bx - ax
ha + ax = bx
a(h + x) = bx
a/x = b/(h + x)
a : x = b : (h + x)