Trig Q.

2013-04-25 10:17 pm
Given :
3 sin^2 A + 2 sin^2 B = 1 and
3 sin 2A - 2 sin 2B = 0.
where A and B are between 0 and 90 degree.
Prove that sin ( A + 2B) = 1

回答 (1)

2013-04-26 12:33 am
✔ 最佳答案
By given ,

3 sin² A + 2 sin² B = 1
3 sin² A = 1 - 2 sin² B
3 sin² A = cos 2Band3 sin 2A - 2 sin 2B = 0
sin 2B = (3/2) sin 2A
sin 2B = 3 sinA cosA
So we have

sin² 2B + cos² 2B = 9 sin² A cos² A + 9 sin⁴A
1 = 9 sin² A (cos² B + sin² A)
sin² A = 1/9
sin A = 1/3 or -1/3 (rejected since 0° ≤ A ≤ 90°)
Hencesin(A + 2B)
= sinA cos2B + cosA sin2B
= sinA * 3 sin² A + cosA * 3 sinA cosA
= 3 sinA (sin² A + cos² A)
= 3 sinA
= 3 (1/3)
= 1

2013-04-25 16:43:37 補充:
Sorry for the typing error :

1 = 9 sin² A (cos² B + sin² A)
should be
1 = 9 sin² A (cos² A + sin² A)


收錄日期: 2021-04-21 22:28:24
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130425000051KK00102

檢視 Wayback Machine 備份