✔ 最佳答案
There could be some easier ways to do this, but this was how I did it...
LHS
= (1+csc(270+x)-tan(x-180)) / (1-csc(x-90)+tan(x+360))
Use the trigonometry identities e.g. sin(A+B) = ... equations,
tan(x-180) = tan(x+360) = tan x
csc(x-90) = csc(270+x) = -sec x
This gives LHS = (1 - sec x - tan x) / (1 + sec x + tan x)
= [ (1 - (sec x + tan x)) / (1 + (sec x + tan x)) ]
= [ (1 - (sec x + tan x)) / (1 + (sec x + tan x)) ] * [ (1 + (sec x + tan x) / (1 + (sec x + tan x) ]----multiply the top and bottom with the donorminator
= [1- (sec x)^2 - 2 sec x tan x - (tan x)^2 ] / [1+2(sec x + tan x) + (sec x)^2 + (tan x)^2 + 2sec x tan x]
Top: 1 -(sec x)^2 = -(tan x)^2; Bottom: combine the 1+(tan x)^2 = (sec x)^2
= [-2(tan x)^2 - 2sec x tan x] / [2(sec x)^2 + 2(sec x + tan x) + 2 sec x tan x]
= [-(tan x)^2 - sec x tan x] / [(sec x)^2 + (sec x + tan x) + sec x tan x]
= - [tan x (tan x + sec x)] / [ (sec x +1) (sec x + tan x)]
= - tan x / (1 + sec x)
Almost there.
= - (sin x / cos x) / [ (cos x +1) / cos x]
= - sin x / (cos x + 1)
Multiply top and bottom by (cos x -1)
= - sin x (cos x - 1) / [ (cos x)^2 -1 ]
Notice: 1 - (cos x)^2 = (sin x)^2. Therefore (cos x)^2 - 1 = -(sin x)^2
= - sin x (cos x - 1) / -(sin x)^2
= - (cos x - 1) / -sin x
Divide top and bottom by cos x
= +(1 - sec x) / tan x
= RHS
參考: 30 mins of own work... very hard.