求 lim_[x,π/2] (sec x - tan x)
求 lim_[x,π/2] (sec x - tan x)
回答 (4)
lim(x->π/2) (secx - tanx)
= lim(x->π/2) (1/cosx - sinx/cosx)
= lim(x->π/2) (1 - sinx)/cosx
= lim(x->π/2) -cosx/sinx (L'Hospital's Rule)
= -0/1
= 0
✡ HYPERCUBE ✡ :step wrong
line 1
≠line 2
=line 3
≠line 4
=0
lim_[x,π/2] (sec x - tan x)
lim_[x,π/2] (1/cos x - sin x /cos x)
lim_[x,π/2] ( 1-sin x) / cos x
Let y=π/2-x
lim_[y,0] (1-sin(π/2-y)) / cos (π/2-y)
lim_[y,0] (1-cos y) / sin y
lim_[y,0] (2sin^2 (y/2)) / (2sin(y/2)cos(y/2))
lim_[y,0] sin(y/2) / cos (y/2)
lim_[y,0] tan (y/2)
tan 0
0
收錄日期: 2021-04-13 19:26:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130424000051KK00319
檢視 Wayback Machine 備份