Imaginary Number Questions 2

2013-04-19 6:40 am
Simplify to form of a+bi

1) [ (1-i) / (1+i) ]^2 / [ (1+i) / (1-i) ]^2

Ans: -2


2) (1+ i)^3 - (1-i)^3

Ans: 4i

I need the steps, thank you!

回答 (2)

2013-04-19 11:43 am
✔ 最佳答案
Simplify to form of a+bi
1) [ (1-i) / (1+i)]^2 / [ (1+i) / (1-i) ]^2
={[(1-i)/(1+i)]^2}*[(1-i)/(1+i)]^2
=[(1-i)/(1+i)]^4
={(1-i)^2/[(1-i)(1+i)]}^4
=[(1-2i-1)/2]^4
=i^4
=1

2) (1+ i)^3 - (1-i)^3
=[(1+i)-(1--)]*[(1+i)^2+(1+i)(1-i)+(1-i)^2]
=(2i)*(1+2i-1+1+1+1-2i-1)
=(2i)*2
=4i


2013-04-20 8:07 am
1 [ (1-i) / (1+i) ]^2= (1 - i)(1 - i)/(1 + i)(1 + i)= -2i/2i= -1 [ (1+i) / (1-i) ]^2= (1 + i)(1 + i)/(1 - i)(1 - i)= 2i/(-2i)= -1So, [ (1-i) / (1+i) ]^2 /[ (1+i) / (1-i) ]^2 = (-1)/(-1) = 12 (1+ i)^3 - (1-i)^3=(1 + 3i + 3i^2 + i^3) - (1 - 3i + 3i^2 - i^3)= 6i + 2i^3= 6i - 2i= 4i


收錄日期: 2021-04-27 17:43:34
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130418000051KK00370

檢視 Wayback Machine 備份