幾題線性代數 幫解

2013-04-19 1:34 am
1. By trial error find examples of 2 by 2 matrices such that
(a) A^2 = -1,A having only real entries.
(b) B^2 = 0,although B不等於0.
(c) C D= - DC , not allowing the case CD=0.
(d) EF =0 ,although no entries of E or F are zero.

2. If A is m by n,how many separate muiltiplications are involved when
(a) A muiltiplies a vector x with n component?
(b) A muiltiplies an n by p matrix B? Then AB is m by p.
(c) A muiltiplies itself to produce A^2? Here m=n.

3. Invent a 3 by 3 matrix M with entries 1,2,...,9. All rows and columns and diagonals add to 15.The first row could be 8,3,4. What times(1,1,1) ?What is the row Vector[ 1 1 1] times M?
更新1:

第一題 (a) A^2 = - I ← 打錯了 是 I 不是1

更新2:

muiltiplies 不小心多打個i 是multiplies

回答 (2)

2013-04-20 7:41 pm
✔ 最佳答案
-----------------------------------------------------------------------------------------------

圖片參考:http://imgcld.yimg.com/8/n/HA05107138/o/20130420114129.jpg
2013-04-19 6:04 pm
1.
(1)
試想a^2=-1,a=i
利用此思維,便可得知
A=i[I]=[{i, 0}{0, i}]
(2)
令B=[{a, b}{c, d}],又B^2=[0]
所以可得聯立方程式
a^2+bc=0
b(a+d)=0
c(a+d)=0
bc+d^2=0
從第2與3式不難推得a+d=0
所以令a=-d=1
bc=-a^2=-1
那b=-c=1
則B=[{1, 1}{-1, -1}]


收錄日期: 2021-04-23 23:25:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130418000010KK03054

檢視 Wayback Machine 備份