絕對值不等式的問題 請高手幫忙一下

2013-04-16 3:17 pm
絕對值 IXI<1 , l (x-y)/(1-xy) l <1 ,試求y的範圍? 答案是 -1<y<1 why?
更新1:

Thank you!

回答 (4)

2013-04-16 9:08 pm
✔ 最佳答案
.............................
|x|<1,-l< (x-y)/(1-xy) <1,試求y的範圍?
Sol
|x|<1
-1<x<1
0<x+1,x-1<0
-l< (x-y)/(1-xy)
(x-y)/(1-xy)+1>0
(x-y+1-xy)/(1-xy)>0
(x-y+1-xy)(1-xy)>0
[(x+1)-y(1+x)](1-xy)>0
(1+x)(1-y)(1-xy)>0
1+x>0
(1-y)(1-xy)>0……………
(x-y)/(1-xy)<1
(x-y)/(1-xy)-1<0
(x-y-1+xy)/(1-xy)<0
(x-y-1+xy)(1-xy)<0
[(x+xy)-(y+1)](1-xy)<0
(x-1)(y+1)(1-xy)<0
x-1<0
(y+1)(1-xy)>0…………..
(1-y)(1-xy)(y+1)(1-xy)>0
(1-y)(1+y)(1-xy)^2>0
(1-y)(1+y)>0
-1<y<1


2013-04-16 10:54 pm
│x│<1 → x^2<1
│(x-y)/(1-xy)│<1
│x-y│<│1-xy│
(x-y)^2<(1-xy)^2
x^2+y^2<1+(x^2)(y^2)(消去 -2xy)
y^2-(x^2)(y^2)<1-x^2
y^2(1-x^2)<1-x^2
y^2<1 (因為x^2<1)
-1<1

2013-04-16 14:55:02 補充:
-1 < y < 1
2013-04-16 7:18 pm
已知
f(x,y)=1 => y=-1;
f(x,y)=-1 => y=1;
則會有
若 -1<1, 則 -1<1.
之結論嗎?

推論感覺怪怪的。


用:
1-xy>0,和1-xy<0代入原不等式討論,比較直接。

2013-04-16 11:20:13 補充:
已知
f(x,y)=1 => y=-1;
f(x,y)=-1 => y=1;
則會有
若 -1 < f(x,y) < 1, 則 -1 < y < 1.
之結論嗎?

推論感覺怪怪的。
2013-04-16 4:41 pm
-1<(x-y)(1-xy)<1
以直角坐標系作圖
先畫(x-y)/(1-xy)=1
整理一下y=-1
在畫(x-y)/(1-xy)=-1
整理一下y=1
已知-1<(x-y)/(1-xy)<-1
所以-1<y<1
即y的絕對值小於1
參考: 我


收錄日期: 2021-04-30 17:43:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130416000010KK00990

檢視 Wayback Machine 備份