Indefinite integrals

2013-04-04 10:48 pm
Evaluate the following integral:

圖片參考:http://imgcld.yimg.com/8/n/HA00100646/o/20130404144732.jpg

回答 (2)

2013-04-05 3:56 pm
✔ 最佳答案
Let x = a tan t
dx = a sec^2 t dt
sqrt (a^2 + x^2) = sqrt (a^2 + a^2 tan^2 t) = a sqrt (1 + tan^2 t) = a sec t
so ∫ sqrt (a^2 + x^2) dx = a^2 ∫ sec^3 t dt
Then using integration by part:
v = sec t, so dv = sec t tan t dt
du = sec^2 t dt, so u = ∫ sec^2 t dt = tan t
Thus ∫ sec^3 dt = sec t tan t - ∫ tan^2 t sec t dt
= sec t tan t - ∫(sec^2 t - 1) sec t dt
= sec t tan t - ∫ sec^3 t dt + ∫ sec t dt
so 2 ∫ sec^3 t dt = sec t tan t + ∫sec t dt = sec t tan t + ln | sec t + tan t|
so ∫sec^3 t dt = (sec t tan t)/2 + (1/2) ln | sec t + tan x | + C
∫ sqrt (a^2 + x^2) dx = (x/2) sqrt (a^2 + x^2) + (a^2/2) ln | sqrt ( a^2 + x^2)/a + x/a| + C


收錄日期: 2021-04-13 19:24:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130404000051KK00181

檢視 Wayback Machine 備份