Probability density function

2013-04-01 1:49 pm
Consider a point picked uniformly at random from the area inside:
1. A square with vertices (0,2) (2,0) (0,-2) (-2,0)
2. A triangle with vertices (0,2) (1,0) (-2,0)
3. A rectangle with vertices (0,2) (2,1) (1,-1) (-1,0)

Find the density function of the x coordinate

Answer:
1. f(x) = (2 - IXI) / 4 Elsewhere f(x) = 0
2. f(x) = [2(1-x) dx] / 3 Elsewhere f(x) = 0

我吾知道點計出來
更新1:

Sorry the answer for Q2 should be: If -2 < x <0 then f(x) = (2+x)/3 If 0<1 then f(x) = (2-2x)/3 Elsewhere f(x) = 0 There's no answer for Q3

更新2:

If I intergrate the area, isn't it equal to volume? why is it equal to f(x)? why don't we differentiate the area to obtain f(x)? I can't really get how to find the density function. Can you use Q1 to explain further? Thanks a lot. I really appreciate for your help.

回答 (1)

2013-04-02 12:24 am
✔ 最佳答案
Ans for Q2, what is dx?
and ans for Q3?

2013-04-01 16:24:17 補充:
---------------------------------------------------------------------------------------------

圖片參考:http://imgcld.yimg.com/8/n/HA05107138/o/20130401162158.jpg


圖片參考:http://imgcld.yimg.com/8/n/HA05107138/o/20130401162346.jpg


2013-04-03 20:37:14 補充:
See below link for explanation:
http://i1090.photobucket.com/albums/i376/Nelson_Yu/int-478_zps7cdadca3.png


收錄日期: 2021-04-23 23:25:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130401000051KK00033

檢視 Wayback Machine 備份