Equations of circle

2013-03-29 9:49 pm
It is given that P(2,0) lies on circle C: x^2+y^2-9x+7y+14=0.Find the equation of the tangent to C at P. Please help.

回答 (2)

2013-03-30 12:41 am
✔ 最佳答案

Question 1,
the centre (O) of C is : ( 9/2 , -7/2 )
slope of OP: ( -7/2 - 0 ) / ( 9/2 - 2 ) = -7/5
slope of tangent: 5/7
By point-slope form, equation of tangent is:
(y-0) / (x-2) = 5/7
so, 5x -7y -10=0

Question 2,
(a) Sub (0,0) into C,
LHS = RHS
so C passes through the origin

(b) the centre (O) of C is : (-3,9)
slope of O and origin: 9/(-3) = -3
slope of tangent = 1/3
The equation of tangent is:
y/x = 1/3
x - 3y = 0
2013-03-29 11:18 pm
1 It is given that P(2,0) lies on circle C:x^2+y^2-9x+7y+14=0.Find theequation
of the tangent to C at P. Please help.
Sol
設切線:y-0=m(x-2)
mx-y-2m=0
x^2+y^2-9x+7y+14=0
(x^2-9x+20.25)+(y+2+7y+12.25)=-14+20.25+12.25
(x-4.5)^2+(y+3.5)^2=18.5
(4,5,-3.5)到mx-y-2m=0距離=√18.5
|4.5m+3.5-2m|/√(1+m^2)=√18.5
|4.5m+3.5-2m|=√18.5*/√(1+m^2)
|5m+7|=√74*/√(1+m^2)
25m^2-70m+49=74m^2+74
49m^2-70m+25=0
(7m-5)^2=0
m=5/7(重根)
切線:(5/7)x-y-10/7=0
5x-7y=10
or
x^2+y^2-9x+7y+14=0.
2x+2yy’-9+7y’=0
(2y+7)y’=9-2x
y’=(9-2x)/(2y+7)
y’(0,2)=(9-4)/(0+7)=5/7
切線:y-0=(5/7)(x-2)
7y=5x-10
5x-7y=10

2 Circle C:x^2+y^2+6x-18y=0 is given.
(a)Show that C passes through the origin.
Sol
0^2+0^2+6*0-18*0=0
So
Cpasses through the origin.
(b)Find the equation of the tangent to C at the origin.
Sol
設切線:y-0=m(x-0)
y-mx=0
x^2+y^2+6x-18y=0
(x^2+6x+9)+(y^2-18y+81)=90
(x+3)^2+(y-9)^2=90
|9+3m|/√(1+m^2)=√90
|3+m|=√10*√(1+m^2)
m^2+6m+9=10(1+m^2)
9m^2-6m+1=0
(3m-1)^2=0
m=1/3(重根)
切線:y-x/3=0
x-3y=0
or
x^2+y^2+6x-18y=0
2x+2yy’+6-18y’=0
(2y-18)y’=-2x-6
y’=(-2x-6)/(2y-18)=(x+3)/(9-y)
y’(0,0)=3/9=1/3
切線:y-0=(1/3)(x-0)
x-3y=0




收錄日期: 2021-04-13 19:24:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130329000051KK00142

檢視 Wayback Machine 備份