F3 coordinate question

2013-03-21 8:33 am
There are 3 points,A(0,0),B(4,0)andC(4,3) on an XY coordinate table, forming a triangle(actually its an right-angled triangle proved by Pyth. thm.) .Find the coordinates of:
a)in-centre(∠ bisector)
b)circumcentre( ⊥bisector)
c)orthocentre(altitude/height)
d)centroid(median)
THX SO MUCH!!

回答 (2)

2013-03-21 5:18 pm
✔ 最佳答案
(a)in-centre(∠ bisector)cosA=4/5sin(A/2)=√[(1-cosA)/2]=√[(1-4/5)/2]=1/√10=√10/10cos(A/2)=√[(1+cosA)/2]=√[(1+4/5)/2]=3/√10=3√10/10Let O=centerΔOAB sine law: O=180-45-A/2=116.565(deg)4/sinO=OA/sin45OA=4*sin45/sin116.565=3.162Ox=OA*cos(A/2)=3.162*3√10/10=3Oy=OA*sin(A/2)=3.162√10/10=1So O=(3,1).......ans
(b)circumcentre( ⊥bisector)Ox=(Ax+Bx)/2=(2,0)Oy=(By+Cy)/2=(0,3/2)=> O=(2,3/2).........ans
(c)orthocentre(altitude/height)O=B=(4,0)........ans
(d)centroid(median)O=(A+B+C)/3=(8/3,1).........ans
2013-03-21 6:31 pm
Since ABC is a right - angled triangle.
(b) Circumcentre is the mid - point of AC = (2, 1.5), call it M.
(c) Orthocentre is B = (4,0)
(d) Centroid divides B and M in the ratio 1 : 2.
x = [4(1) + 2(2)]/(1 + 2) = 8/3
y = [0(1) + 1.5(2)]/(1 + 2) = 3/3 = 1.
So centroid is (8/3, 1).
(a)
Let radius of the inscribed circle be r, so the in - centre is (4 - r, r).
By considering the area of triangle ABC
Area = AC(r)/2 + BC(r)/2 + AB(r)/2 = 5r/2 + 3r/2 + 4r/2 = 12r/2 = 6r = (3)(4)/2
so r = 1.
so in - centre is (4 - 1, 1) = (3,1).


收錄日期: 2021-04-25 22:44:03
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130321000051KK00010

檢視 Wayback Machine 備份