5條MATHS MOCK MC急
回答 (3)
8.y=x^2+bx+c=0
Ax=[-b+√(b^2-4ac)]/2
Dx=[-b-√(b^2-4ac)]/2
Mx=(Ax+Dx)/2=-2b/4a=-b/2
y(0)=0+0+c=c => Cy=By=c
Bx=2Mx-Cx=-b/a-0=-b
area(MBC)=|Bx*Cy/2|
=|(-b)*c/2|
=|bc/2|.........ans
18.螺旋=最短路線: w=角速度, Q=角位移=wt, v=rw
(1) 基本公式:
x=r*cosQ=r*cos(wt) => dx=-rw*sin(wt)dt
y=r*sinQ=r*sin(wt) => dy=rw*cos(wt)dt
z=vt=rwt => dz=rwdt
(2) 求弧線長s=?
(ds)^2=(dx)^2+(dy)^2+(dz)^2
=[(rw)^2*(cosQ^2+sinQ^2)+(rw)^2]dt^2
=[(rw)^2+(rw)^2]dt^2
=2*(rw)^2*dt^2
ds=rw√2dt
s=∫rw√2dt
=∫r√2d(wt)
=∫r√2dQ........Q=0~3π
=r√2*Q
=3r√2π
=6√(π^2+1)
(3) 求半徑r=?
兩邊平方: 18r^2*π^2=36(π^2+1)
r^2=2(π^2+1)/π^2
r=√[2(π^2+1)]/π
=√2*a/π
where a=√(π^2+1)
(4) 求柱高h=?:
繞1.5圈 => s=6a
繞1圈 => s=4a
商高定理:
h^2=s^2-(2πr)^2
=16a^2-4*2a^2
=8a^2
h=2√2*a
area(ABCD)=2πrh
=2π*(√2*a/π)*2√2*a
=8a^2
=8(π^2+1)
=原題答案無法選擇
26.ABCD=平行四邊形 => C=?
A=(-1,4), B=(-3,-2), D=(2,-1)
C=B對稱點 vs AD
=2M-B
=(1,3)-(-3,-2)
=(1+3,3+2)
=(4,5).......ans=(C)
37.
y1=log<a>x=log(x)/log(a)
y2=log<b>x=log(x)/log(b)
x=1; y1=y2=0
x>1; y1>y2 => log(b)<log(a)
0<b<a=分數<1........ans
43.p=6/7 => q=1-p=1/7
二項式分配: c(5,x)=5!/x!(5-x)!
f(x)=c(5,x)*p^x*q^(5-x)
直接改用商高定理求取:
s^2=h^2+(3πr)^2........繞1.5圈=3π
36(π^2+1)=6^2+(6π)^2
=6^2+(3π2)^2
=> h=6, r=2
A=2πrh
=2π2*6
=24π........ans=(B)
8.y=x^2+bx+c=0Ax=[-b+√(b^2-4ac)]/2Dx=[-b-√(b^2-4ac)]/2Mx=(Ax+Dx)/2=-2b/4a=-b/2y(0)=0+0+c=c => Cy=By=cBx=2Mx-Cx=-b/a-0=-barea(MBC)=|Bx*Cy/2|=|(-b)*c/2|=|bc/2|.........ans
18.螺旋=最短路線: w=角速度, Q=角位移=wt, v=rw(1) 基本公式:x=r*cosQ=r*cos(wt) => dx=-rw*sin(wt)dty=r*sinQ=r*sin(wt) => dy=rw*cos(wt)dtz=vt=rwt => dz=rwdt(2) 求弧線長s=? (ds)^2=(dx)^2+(dy)^2+(dz)^2=[(rw)^2*(cosQ^2+sinQ^2)+(rw)^2]dt^2=[(rw)^2+(rw)^2]dt^2=2*(rw)^2*dt^2ds=rw√2dts=∫rw√2dt=∫r√2d(wt)=∫r√2dQ........Q=0~3π=r√2*Q=3r√2π=6√(π^2+1)(3) 求半徑r=?兩邊平方: 18r^2*π^2=36(π^2+1)r^2=2(π^2+1)/π^2r=√[2(π^2+1)]/π=√2*a/πwhere a=√(π^2+1)(4) 求柱高h=?: 繞1.5圈 => s=6a繞1圈 => s=4a商高定理:h^2=s^2-(2πr)^2=16a^2-4*2a^2=8a^2h=2√2*aarea(ABCD)=2πrh=2π*(√2*a/π)*2√2*a=8a^2=8(π^2+1)=原題答案無法選擇
26.ABCD=平行四邊形 => C=?A=(-1,4), B=(-3,-2), D=(2,-1)AD中點: M=(A+D)/2=(-1+2,4-1)/2=(1/2,3/2)C=B對稱點 vs AD=2M-B=(1,3)-(-3,-2)=(1+3,3+2)=(4,5).......ans=(C) 37.y1=log<a>x=log(x)/log(a)y2=log<b>x=log(x)/log(b)x=1; y1=y2=0x>1; y1>y2 => log(b)<log(a)0<b<a=分數<1........ans
43.p=6/7 => q=1-p=1/7二項式分配: c(5,x)=5!/x!(5-x)!f(x)=c(5,x)*p^x*q^(5-x)f(3)=(5!/3!2!)*(6/7)^3*(1/7)^2=(5*4/2)*(6*36/7*49)/49=10*216/7*49^2=2160/16807=30*72/72*233.43=30/233.43........ans=(D)
2013-03-20 12:42:54 補充:
第18題修正:
z=v*t 修改為: z=k*v*t
多出未知數k.無法使用積分法求取: r.h.k
直接改用商高定理求取:
s^2=h^2+(3πr)^2........繞1.5圈=3π
36(π^2+1)=6^2+(6π)^2
=6^2+(3π2)^2
=> h=6, r=2
A=2πrh
=2π2*6
=24π........ans=(B)
收錄日期: 2021-04-13 19:22:03
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130319000051KK00248
檢視 Wayback Machine 備份