Discrete Math - gcd help?

2013-03-11 9:43 am
Show that gcd(4n + 7;5n + 9) = 1, for all integers n.

回答 (1)

2013-03-11 11:48 am
✔ 最佳答案
Let the GCD of 4n + 7 and 5n + 9 be k.

Let A and B are integers such that
Ak = 4n + 7 and
Bk = 5n + 9.

(B - A)k
= n + 2

Thus, k divides n + 2.
Like n, n + 2 is also an arbitrary integer.
Only ±1 divides all integers, hence
k = 1.


收錄日期: 2021-05-01 14:43:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130311014335AAtYF5a

檢視 Wayback Machine 備份