數學歸納法題

2013-03-02 2:26 am
(a) 證 n(n+1) 可被2整除

(b)利用(a) 證 n^3+5n 可被6整除

回答 (3)

2013-03-02 4:28 am
✔ 最佳答案
(a)
For n=1,
n(n+1)=1(2)=2
The statement is true for n=1
------------------------------------------
Assume the statement is true for n=k
i.e. k(k+1)=2M, where k,M are positive integers
------------------------------------------
For n=k+1
(k+1)(k+2)
=k(k+1)+2(k+1)
=2M+2(k+1)
=2(M+k+1)
The statement is true for n=k+1
-------------------------------------------
By the principle of Mathematical Induction,
the statement is true for all positive integers n.
-------------------------------------------
(b)
For n=1,
n^3+5n=1+5=6
The statement is true for n=1
-------------------------------------------
Assume the statement is true for n=k
i.e. k^3+5k=6N, where k,N are positive integers
-------------------------------------------
For n=k+1
(k+1)^3+5(k+1)
=k^3+3k^2+3k+1+5k+5
=(k^3+5k)+3k^2+3k+6
=6N+3k(k+1)+6
=6(N+1)+3k(k+1)
Since
k(k+1)=2M (proved)
Therefore
6(N+1)+3k(k+1)
=6(N+1)+6M
=6(M+N+1)
The statement is true for n=k+1
-------------------------------------------
By the principle of Mathematical Induction,
the statement is true for all positive integers n.
2013-03-02 4:27 am
數學歸納法 wo, use MI prove
2013-03-02 2:44 am
i only can answer no.1

if N is even, then N+1 is odd
even*odd=even

if N is odd, then N+1 is even
odd*even=even
參考: myself


收錄日期: 2021-04-13 19:21:06
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130301000051KK00199

檢視 Wayback Machine 備份