Limit

2013-03-01 3:22 am
I have already known that lim x->infinity (1+1/x)^x=e
But how to find lim x->0 (1+1/x)^x?

回答 (2)

2013-03-01 4:45 am
✔ 最佳答案
I have already known that limx->infinity (1+1/x)^x=e
But how to find lim x->0 (1+1/x)^x?
Sol
lim(x->0)_(1+1/x)^x
=e^{ln[lim(x->0)_(1+1/x)^x]}
=e^{lim(x->0)_[ln(1+1/x)^x]}
=e^{lim(x->0)_[xln(1+1/x)]}
=e^{lim(x->0)_[ln(1+1/x)/(1/x)]}
lim(x->0+)_(1+1/x)^x
=e^{lim(x->0+)_[ln(1+1/x)/(1/x)]}
=e^{lim(y->∞)_[ln(1+y)/y]} ∞/∞ type
=e^{lim(y->∞)_[1/(1+y)]} ∞/∞ type
=e^0
=1
lim(x->0-)_(1+1/x)^x
=e^{lim(x->0-)_[ln(1+1/x)/(1/x)]}
=e^{lim(y->-∞)_[ln(1+y)/y]} ∞/∞ type
=e^{lim(y->-∞)_[1/(1+y)]} ∞/∞ type
=e^0
=1
So
lim(x->0)_(1+1/x)^x=1


2013-03-01 6:19 pm
the answer is 1.
參考: Simon YAU


收錄日期: 2021-04-13 19:19:16
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130228000051KK00256

檢視 Wayback Machine 備份