index question

2013-02-22 4:51 am
x,y,z are positive numbers, if x^p=y^q=z^r, 1/p+1/q+1/r=0,
find the value of xyz.

回答 (2)

2013-02-22 5:07 am
✔ 最佳答案
x,y,z are positive numbers, if x^p=y^q=z^r, 1/p+1/q+1/r=0,
find the value of xyz.

Let x^p=y^q=z^r = C
i.e. ln x^p = ln y^q = ln z^r
=> p ln x = q ln y = r ln z = ln C
=> ln x = (ln C)/p
ln y = (ln C)/q
ln z = (ln C)/r

ln xyz
=ln x + ln y + ln z
=(ln C)/p + (ln C)/q + (ln C)/ r
= (ln C)[ 1/p+1/q+1/r ]
=ln C * 0 =0
so xyz =e^0
=1

2013-02-21 22:31:17 補充:
yes, this method works too
參考: ME
2013-02-22 6:05 am
x^p =y^q = z^r
x = z^(r/p) and y= z^(r/q)
xyz = z^(r/p)∙z^(r/q) ∙z
= z^(r/p+r/q+r/r)
= z^0 =1


收錄日期: 2021-04-24 10:09:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130221000051KK00309

檢視 Wayback Machine 備份