求三題極限

2013-02-19 9:59 am
lim( 1 / x - 1 / x√(x+1) )
x→0

lim( √(x^2+3x) - x )
x→∞

lim√x(√(x+6)-√x)
x→∞

回答 (4)

2013-02-19 2:47 pm
✔ 最佳答案
lim(x->0)_{1/x-1/[x√(x+1)]}
Sol
Set y=√(x+1)
y^2=x+1
x=y^2-1
lim(x->0)_{ 1/x-1/[x√(x+1)]}
=lim(y->1)_{1/(y^2-1)-1/[(y^2-1)y]}
=lim(y->1)_{(y-1)/[(y^2-1)y]}
=lim(y->1)_{1/[(y+1)y]}
=1/2

lim(x->∞)_[√(x^2+3x)-x]
Sol
lim(x->∞)_[√(x^2+3x)-x]
=lim(x->∞)_{[√(x^2+3x)+x]*[√(x^2+3x)-x]/[√(x^2+3x)+x]}
=lim(x->∞)_{[(x^2+3x)-x^2]/[√(x^2+3x)+x]}
=lim(x->∞)_{3x/[√(x^2+3x)+x]}
=lim(x->∞)_{3/[√(1+3/x)+1/x]}
=3/2

lim(x->∞)_√x(√(x+6)-√x)
Sol
lim(x->∞)_√x(√(x+6)-√x)
=lim(x->∞)_[√x(√(x+6)-√x)*(√(x+6)+√x)/(√(x+6)+√x)]
=lim(x->∞)_[6√x/(√(x+6)+√x)]
=lim(x->∞)_[6/(√(1+6/x)+√1)]
=3


2013-02-19 9:39 pm
謝謝提醒,的確應該用"="才對!
2013-02-19 9:32 pm
William ( 專家 5 級 ):你好。
=lim 1/[(x+1+√(x+1)]
≒1/(1+1)
≒1/2
≒應改為 =
尤其是
1/(1+1)
≒1/2
之≒。
2013-02-19 1:05 pm
1.lim<x→0>[(1/x-1)/x√(x+1)]≒lim<x→0>[(1/x)/x√(x+1)]=lim<x→0>{1/[x^2*√(x+1)]}≒lim<x→0>[1/(x^2*√1)]=lim<x→0>(1/x^2)=∞........ans
2.lim<x→∞>[√(x^2+3x)-x]≒lim<x→∞>[√(x^2)-x]=lim<x→∞>(x-x)=0........ans
3.lim<x→∞>√x(√(x+6)-√x)=lim<x→∞>{√[x(x+6)]-x}=lim<x→∞>{√(x^2+6x)-x}≒lim<x→∞>[√(x^2)-x]=lim<x→∞>(x-x)=0........ans


收錄日期: 2021-04-30 17:25:48
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130219000015KK02080

檢視 Wayback Machine 備份