✔ 最佳答案
1.
(a)
f(x) is divided by x - 5, the remainder is 4 :
f(5) = 4
(5a - b)² - 5 = 4
(5a - b)² = 9
5a - b = ±3
b = 5a ± 3
b = 5a + 3 or b = 5a - 3
(b)
x - 1 is a factor of f(x) :
f(1) = 0
(a - b)² - 1 = 0
(a - b)² = 1
a - b = 1 or a - b = -1
a = b + 1 or a = b - 1
Put a = b + 1 into the expression b = 5a ± 3
b = 5(b + 1) + 3 or b = 5(b + 1) - 3
b = 5b + 5 + 3 or b = 5b + 5 - 3
4b = -8 or 4b = -2
b = -2 or b = -1/2
When b = -2, a = -1
When b = -1/2, a = 1/2
Similarly, put a = b - 1 into the expression b = 5a ± 3
b = 5(b - 1) + 3 or b = 5(b - 1) - 3
b = 5b - 5 + 3 or b = 5b - 5 - 3
4b = 2 or 4b = 8
b = 1/2 or b = 2
When b = 1/2, a = -1/2
When b = 2, a = 1
Ans: a = -1 and b = -2
or: a = 1 and b = 2
or: a = 1/2 and b = -1/2
or: a = -1/2 and b = 1/2
2.
(a)
x is a factor of f(x) :
f(0) = 0
(0 + m)(0 + n)(0 - 1) + 5 = 0
mn = 5
Hence, m = 1 and n = 5
or: m = 5 and n = 1
or: m = -1 and n = -5
or: m = -5 and n = -1
(b)
Case I : f(x) = (x + 5)(x + 1)(x - 1)+ 5
f(x) = (x + 5)(x² - 1) + 5
f(x) = x³ + 5x² - x - 5 + 5
f(x) = x³ + 5x² - x
f(x) - g(x) = 0
(x³ + 5x² - x) - (x³ - 9x² + 10x + k) = 0
x³ + 5x² - x - x³ + 9x² - 10x - k = 0
14x² - 11x - k = 0
The above equation has real roots.
Then, the discriminant Δ ≥ 0
(-11)² - 4(14)(-k) ≥ 0
56k ≥ -121
k ≥ -121/56
Case II : f(x) = (x - 5)(x - 1)² + 5
f(x) = (x - 5)(x² - 2x + 1) + 5
f(x) = x³ - 7x² + 11x - 5 + 5
f(x) = x³ - 7x² + 11x
f(x) - g(x) = 0
(x³ - 7x² + 11x) - (x³ - 9x² + 10x + k) = 0
x³ - 7x² + 11x - x³ + 9x² - 10x - k = 0
2x² + x - k = 0
The above equation has real roots.
Then, the discriminant Δ ≥ 0
(1)² - 4(2)(-k) ≥ 0
8k ≥ -1
k ≥ -1/8
Ans:
When (m = 1 and n = 5) or (m = 5 and n = 1), k ≥ -121/56
When (m = -1 and n = -5) or(m = -5 and n = -1), k ≥ -1/8