✔ 最佳答案
分析以下函數的單調區間:(1) y(x)=3x^4-6x^2+2=3(x^4-2x^2+1)+2-3=3(x^2-1)^2-1x=+-1 => min=y(-1)=-1y(x)>=-1.........ans
(2) y(x)=3*2^(2x)-6*2^x+2=3(2^x-1)^2-1x=0 => min=y(0)=-1y(x)>=-1..........ans
(3) y(x)=3sin^2(x)-6sin(x)+2=3[sin(x)-1]^2-1x=π/2 => y(π/2)=-1y(x)>=-1..........ans
2013-02-11 08:57:20 補充:
(3) 繼續
y(0)=2, y(3π/2)=3+6+2=11
-1<=y(x)<=11......ans
2013-02-12 09:48:59 補充:
(1) x=+-1 => min=y(+-1)=-1
y(0)=2
x=~-1 => 遞減
x=-1~0 => 遞增
x==0~1 => 遞減
x=1~ => 遞增
2013-02-12 14:14:27 補充:
(3) y(x)=3sin^2(x)-6sin(x)+2=3[sin(x)-1]^2-1
x=π/2 => y(π/2)=-1
y(x)>=-1
y(-3π/2)=y(-5π/2)=y(-7π/2)=....=3(-2)^2-1=11
y(-π/2)=y(π/2)=y(3π/2)=....=-1
週期: T=π
..............
x=-5π/2~-3π/2 => 遞減
x=-3π/2~-π/2 => 遞增
x=-π/2~π/2 => 遞減
x=π/2~3π/2 => 遞增
........
2013-02-12 14:15:00 補充:
(1) y(x)=3x^4-6x^2+2
=3(x^4-2x^2+1)+2-3
=3(x^2-1)^2-1
x=+-1 => min=y(+-1)=-1
y(0)=2
x=~-1 => 遞減
x=-1~0 => 遞增
x==0~1 => 遞減
x=1~ => 遞增
2013-02-12 14:30:10 補充:
(2) y(x)=3*2^(2x)-6*2^x+2=3(2^x-1)^2-1
x=0 => min=y(0)=-1
y(x)>=-1
y(-∞)=3(0-1)^2-1=2
x=-∞~0 => 遞減
x=0~∞ => 遞增