✔ 最佳答案
Let f(θ) = acscθ + bsecθ
f'(θ) = bsecθtanθ - acscθcotθ
= b(1/cosθ)(sinθ/cosθ) - a(1/sinθ)(cosθ/sinθ)
= [b(sinθ)^3 - a(cosθ)^3]/[(sinθcosθ)^2]
when f'(θ) = 0, f(θ) has the min. value
f'(θ) = 0 => b(sinθ)^3 - a(cosθ)^3 = 0 => (tanθ)^3 = a/b
Then cscθ = √(a^(2/3) + b^(2/3))/a^(1/3), secθ = √(a^(2/3) + b^(2/3))/b^(1/3)
The minimum of acscθ + bsecθ in terms of a, b is
a^(2/3)√(a^(2/3) + b^(2/3)) + b^(2/3)√(a^(2/3) + b^(2/3))
= (a^(2/3) + b^(2/3))^(3/2)