高一數學-數列

2013-02-08 7:02 pm
d1=1, dn=dn-1+(n^2-n+1) (n屬於N, n>=2)
求第n項以n表示
答案:n/3(n^2+2)

回答 (3)

2013-02-08 7:28 pm
✔ 最佳答案
a2=a1+3
a3=a2+4
a4=a3+13
....
an=an-1+(n^2-n+1)
把上面式子全部加起來
可以得到
an=a1+3+7+13+...+(n^2-n+1)
後面那段3+7+13是由(n^2-n+1)這個形式出來的
其實就是平方的總和n項的總和還有n個常數的和
an=1+[(n/6)(n+1)(2n+1) -1] - [(1+n)*n/2 -1]+ (n -1)
為什麼要減1因為起始項都不是從1開始而是2
整理完就是答案了

2013-02-08 14:21:02 補充:
a3=a2+7
2013-02-08 8:50 pm
d1=1,d[n]=d[n-1]+(n^2-n+1) (n屬於N,n>=2)
求第n項以n表示
Sol
d[1]=1
d[2]=d[1]+(2^2-2+1)
d[3]=d[2]+(3^2-3+1)
d[4]=d[3]+(4^2-4+1)
………..
d[n-2]=d[n-3]+[(n-2)^2-(n-2)+1]
d[n-1]=d[n-2]+[(n-1)^2-(n-1)+1]
d[n]=d[n-1]+(n^2-n+1)
-----------------------------------------------

2013-02-08 12:50:51 補充:
d[n]=1+(2^2-2+1)+(3^2-3+1)+(4^2-4+1)+….+(n^2-n+1)
=n+(2^2+3^2+4^2+…+n^2)-(2+3+4+…+n)
=n+(1^2+2^2+3^2+4^2+…+n^2)-1-(1+2+3+4+…+n)+1
=n+(1^2+2^2+3^2+4^2+…+n^2)-(1+2+3+4+…+n)
=n+n(n+1)(2n+1)/6-n(n+1)/2
=(n/6)*[6+(n+1)(2n+1)-3(n+1)]
=(n/6)*(6+2n^2+3n+1-3n-3)
=(n/6)*(2n^2+4)
=n(n^2+2)/3
2013-02-08 8:22 pm
dn = dn-1 + (n^2 - n + 1)
==> Σdn = Σdn-1 + Σ(n^2 - n + 1)
==> dn = Σn^2 - Σn + Σ1
==> dn = (1/6)n(n+1)(2n+1) - (1/2)n(n+1) + n
==> dn = (n/6)[(n+1)(2n+1) - 3(n+1) + 6]
==> dn = (n/6)(2n^2 + 3n + 1 - 3n - 3 + 6)
==> dn = (n/6)(2n^2 + 4)
==> dn = (n/3)(n^2 + 2)


收錄日期: 2021-04-30 17:25:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130208000010KK01359

檢視 Wayback Machine 備份