✔ 最佳答案
20.
(a)
Slope of L1 = -1 / (-√3) = 1 / √3
Slope of L2 = -(-√3) / 1 = √3
Their slopes are NOT equal.
Hence, L1 and L2are NOT parallel.
(b)
Let (x1, y1) the coordinates of the point.
The point is equidistant from L1 and L2.
|x1 - √3y1| / √[1² + (√3)²] = |y1 - √3x1|/ √[1² + (√3)²]
x1 - √3y1 = y1 - √3x1 ..or.. x1 - √3y1= -(y1 - √3x1)
(1 + √3)x1 - (1 + √3)y1 = 0 ..or.. (1 - √3)x1 + (1 - √3)y1 = 0
x1 - y1 = 0 ..or.. x1 + y1= 0
The equation of the locus is :
x - y = 0 ..or.. x + y = 0
=====
21.
(a) (i)
Let (x1, y1) be the coordinates of the point.
The point is equidistant from A and B :
√[(x1 + 5)² + (y1 - 1)²] = √[(x1 + 3)² + (y1- 5)²]
x1² + 10x1 + 25 + y1² - 2y1 + 1 = x1²+ 6x1 + 9 + y1² - 10y1 + 25
4x1 + 8y1 - 8 = 0
x1 + 2y1 - 2 = 0
The equation of the locus of the point : x+ 2y - 2 = 0
(a) (ii)
Let (x2, y2) be the coordinates of the point.
The point is equidistant from B and C :
√[(x2 + 3)² + (y2 - 5)²] = √[(x2 - 3)² + (y2+ 7)²]
x2² + 6x2 + 9 + y2² - 10y2 + 25 = x²- 6x2 + 9 + y2² + 14y2 + 49
12x2 - 24y2 - 24 = 0
x2 - 2y2 - 2 = 0
The equation of the locus of the point : x- 2y - 2 = 0
(b) (i)
x + 2y - 2 = 0 ...... [1]
x - 2y - 2 = 0 ...... [2]
[1] - [2]:
4y = 0
y = 0
Put y = 0 into [1] :
x + 2(0) - 2 = 0
x = 2
Coordinates of D = (2, 0)
(b) (ii)
Let (x3, y3) be the coordinates of P.
PD = AD
√[(x3 - 2)² + (y3 - 0)²] = √[(-5 - 2)² + (1 - 0)²]
x3² - 4x3 + 4 + y3² = 50
x3² + y3² - 4x3 - 46 = 0
Equation of the locus of P : x² + y²- 4x - 46 = 0