常數倍的極限律證明

2013-01-25 8:02 pm
當x趨近於a時,f(x)存在一個極限L
c為一常數

如何證明x趨近a時,c.f(x)的極限,會等於c乘以f(x)的極限?
更新1:

那麼,請問可以用delta跟epsilon的概念去證明嗎?

回答 (2)

2013-01-25 8:48 pm
✔ 最佳答案
當x->a,f(x)->A,我們記為lim f(x) = A (x->a省略)
設x->a,g(x)->B,我們記為lim g(x) = B
令 f(x) = A + u,g(x) = B + v
其中 u->0,v->0
f(x)+g(x) = (A + u) + (B + v) = (A + B) + (u + v)
因為 (u + v)->0
所以 lim [f(x)+g(x)] = A + B
因此 lim [f(x)+g(x)] = lim f(x) + lim g(x)
當g(x) = f(x)
則得 lim [f(x)+f(x)] = lim f(x) + lim f(x)
即得 lim [2f(x)] = 2[lim f(x)]
同理可推至
lim [cf(x)] = c[lim f(x)]



2013-01-25 14:19:21 補充:
設 lim f(x) = L (當 x->a)
意指對任意小之 ξ > 0,恆存在一個 δ > 0 使得當 0<│x-a│< δ 時,必有│f(x) - L│< ξ

│f(x) - L + f(x) - L│ <= │f(x) - L│ + │f(x) - L│

│2f(x) - 2L│ <= 2ξ ...............(1)

2013-01-25 14:19:34 補充:
當 x -> a ,δ -> 0 , ξ -> 0

(1)式可寫為 lim │2f(x) - 2L│ = 0 (當 x->a)

即 lim 2f(x) = lim 2L

即 lim 2f(x) = 2L ====> lim 2f(x) = 2lim f(x) (當 x->a)

2個可推廣至c個,所以 lim [c f(x)] = c [lim f(x)]
2013-01-26 5:17 am
對任意 ε > 0, 存在 δ > 0 使得
當 0 < |x-a| < δ 時, 都有 |f(x)-L| < ε/(1+|c|)
故得
|c*f(x)-c*L| = |c|*|f(x)-L| ≦ |c|*ε/(1+|c|) < ε
故 lim c*f(x) = c*L.


收錄日期: 2021-05-04 01:51:04
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130125000010KK02370

檢視 Wayback Machine 備份