函數運算 希望能幫助解答,萬分感激!~

2013-01-15 2:19 pm
已知(x)=2x^2-x 求

c) h(n+1)

d) h(n+1)-h(n)

e) h(x-1)

請問係唔係要展開?

如果展開後我又不懂代入

> <幫下我,唔該大家
更新1:

SORRY 我打"溜"左...h(x)=2x^2-x

回答 (4)

2013-01-15 4:59 pm
✔ 最佳答案
(c)

h(n + 1)
= 2(n + 1)^2 - (n + 1)
= 2(n^2 + 2n + 1) - (n + 1)
= 2n^2 + 4n + 2 - n - 1
= 2n^2 + 3n + 1

(d)

h(n + 1) - h(n)
= (2n^2 + 3n + 1) - (2n^2 - n)
= 2n^2 + 3n + 1 - 2n^2 + n
= 4n + 1

(e)

h(x - 1)
= 2(x - 1)^2 - (x - 1)
= 2(x^2 - 2x + 1) - (x - 1)
= 2x^2 - 4x + 2 - x + 1
= 2x^2 - 5x + 3

參考: knowledge
2013-01-15 7:51 pm
建議先factorize h(x)。
h(x) = 2x²-x = x(2x-1)


c)
h(n+1)
= (n+1)[2(n+1)-1]
=(n+1)(2n+1)

d)
h(n+1) - h(n)
= (n+1)(2n+1) - n(2n-1)
= (2n²+3n+1) - (2n²-n)
= 4n+1

e)
h(x-1)
= (x-1)[2(x-1)-1]
= (x-1)(2x-3)

2013-01-15 14:21:47 補充:
其實part d我就咁做既:
h(n+1) - h(n)
= (n+1)(2n+1) - n(2n-1)
= n(2n+1) +(2n+1) -n(2n-1)
= n[(2n+1)-(2n-1)] + (2n+1)
= 4n+1
2013-01-15 4:19 pm
SORRY 我打"溜"左...h(x)=2x^2-x
2013-01-15 2:40 pm
你確定是"(x)"而不是"h(x)?


收錄日期: 2021-04-28 14:21:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130115000051KK00036

檢視 Wayback Machine 備份