兩條數學問題,線方程加log方程,謝謝

2013-01-03 10:27 pm
q1.
find the line of equation bisecting the points (2,6) and (8,6) whit the slope
perpendicular to -3


q2.
log3x^4 - logx^2 = log81 - logx

要有步驟 謝謝

回答 (2)

2013-01-03 11:03 pm
✔ 最佳答案
the slope of equation is -3
the line of equation cut the mid point of (2,6) and (8,6)
mid point=((2+8)/2,(6+6)/2]
mid point=(5,6)
[(y-6)/(x-5)]=-3
y-6=-3x+15
y+3x-21=0
the line of equation is y+3x-21=0.

log(3x)^4 - logx^2 = log81 - logx
log(3x)^4 - logx^2+logx=log81
log([(3x)^4](x)/x^2)=log81
log(81x^3)=log81
log81+3logx=log81
3logx=0
logx=0
x=1

2013-01-03 19:27:48 補充:
SOR 我黎過 英文唔好....
the slope of equation 乘 -3=-1
the slope of equation=1/3
the line of equation cut the mid point of (2,6) and (8,6)
mid point=((2+8)/2,(6+6)/2]
mid point=(5,6)
[(y-6)/(x-5)]=1/3
3y-18=x-5
3y-x-13=0
the line of equation is 3y-x-13=0

log3x^4 - logx^2 = log81 - logx

2013-01-03 19:32:02 補充:
log3x^4 - logx^2+logx= log81 [ logAB=logA+logB][logA/B=logA-logB]
log(3x^4/x^2)+logx= log81
log(3x^2)+ logx= log81
log[(3x^2)(x)]= log81
log[(3x^3)= log81
3x^3=81
x^3=27
x^3=3^3
x=3
參考: 自己 如果3x冇() 講聲, 等等, 計到眼花..Sor 其實我識解....
2013-01-04 12:50 am
slope perpendicular to -3
係 to x=-3, 定係 to y=-3, 定係 to 另一條 straight line with slope = -3 ?


收錄日期: 2021-04-13 19:13:09
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20130103000051KK00134

檢視 Wayback Machine 備份