✔ 最佳答案
Let ∠ACP = 2x , ∠PCB = 2y , by given that ∠C = 2∠B , ∠ABC = x + y.
∠ABP =∠ABC - ∠PBC = x + y - 2y = x - y.
∠BAP
= 180° - ∠ABP - ∠APB = 180° - (x - y) - (360° - ∠APC -∠BPC)
= 180° - (x - y) - (360° - 2x - (180° - 4y)) = 180° - (x - y) - (180° - 2x + 4y)
= x - 3y
圖片參考:
http://imgcld.yimg.com/8/n/HA04628698/o/20130103160607.jpg
Let AP = 1 , then BP = CP = 2cos 2x.
Consider △APB , by sine formula ,
sin∠BAP / BP = sin∠ABP / AP
sin (x - 3y) / (2cos 2x) = sin (x - y) , let k be x - y , then
sin (3k - 2x) = 2 cos 2x sin k
sin 3k cos 2x - cos 3k sin 2x = 2 cos 2x sin k
(3sin k - 4sin³ k)cos 2x - (4cos³ k - 3cos k)sin 2x = 2 cos 2x sin k
sin k cos 2x - 4sin³ k cos 2x - 4cos³ k sin 2x + 3cos k sin 2x = 0
sin k cos 2x (1 - 4sin² k) - cos k sin 2x (4cos² k - 3) = 0
sin k cos 2x (1 - 4sin² k) - cos k sin 2x (1 - 4sin² k) = 0
(1 - 4sin² k) (sin k cos 2x - cos k sin 2x) = 0
sin k cos 2x - cos k sin 2x = 0 or (1 - 4sin² k) = 0
tan k = tan 2x or sin k = ± 1/2
k = x - y = 2x ⇒ - y = x (rejected)
or 180° + k = 180° + x - y = 2x ⇒ x + y = 180° (rejected) or
sin k = ± 1/2
⇒ k = x - y = 30° , i.e. y = x - 30°
or x - y = 150° (rejected since 2x + 2y < 180° , so x - y < x + y < 90°)
Note that ∠PAC = 180° - 4x ,
∠BAP = x - 3y = x - 3(x - 30°) = 90° - 2x.
Then ∠A
= ∠BAP + ∠PAC
= 180° - 4x + 90° - 2x
= 270° - 6x
= 3(90° - 2x)
= 3 ∠BAP
That means AP trisect the angle ∠A.
2013-01-04 22:59:06 補充:
幾何解法 :
在BP左方作點 D 使 △DBP ≌ △APC , 則 DBCA 為等腰梯形。
故∠DBC =∠ACB = 2∠ABC ,
推出∠DBA =∠ABC =∠DAB (alt∠s , BC//DA)
故 DA = DB = DP , 表明 D 為 △APB 外心。
顯然 A 在外接圓周上, 故圓心角∠PDB =∠PAC = 2∠BAP, 證畢~