F4 maths

2012-12-26 3:14 am
1.Given two points A(-2,4) and B(4,-3) .The points are reflected about the line y=1 to get the new image A' and B'
a) Find the coordinates of A' and B'
b) Find the equation of (i) AB (ii) A'B'
c) Find the point of intersection of AB and A'B'.

2.Let f(x)be a polynomial. When f(x) is divided by x-1, the quotient is 6x^2+ax-19 . It is given that x-3 is a factor of f(x) and F(1) = -4.
a) Find f(x). b) solve f(x-1)=0. answer:x=0,11/6,4

3. If the maximum value of the function y=-3(x-p)^2-2p+1 is -9, find
a) the value of p. [5] b) the coordinates of the vertex. [(5,-9)]

4. It is given that the straight lines L1:5x-2y-8=0 and L2:2x+ky+12=0 have the same y-intercept.
a) find the value of k.
b)If the straight line L2and L3 have the same slope and the x-intercept of L3 is -2, find the equation of L3.

回答 (2)

2012-12-26 8:16 am
✔ 最佳答案
1.
a)
A' = (-2, 2(1)-4) = (-2, -2)
B' = (4, 2(1)-(-3)) = (4, 5)

b) (i)
Equation of AB :
(y - 4)/(x + 2) = (4 + 3)/(-2 - 4)
(y - 4)/(x + 2) = -7/6
6y - 24 = -7x - 14
7x + 6y - 10 = 0

b) (ii)
Equation of A'B' :
(y - 5)/(x - 4) = (5 + 2)/(4 + 2)
(y - 5)/(x - 4) = 7/6
7x - 28 = 6y - 30
7x - 6y + 2 = 0

c)
AB : 7x + 6y - 10 = 0 ...... [1]
A'B' : 7x - 6y + 2 = 0 ...... [2]

[1] + [2] :
14x - 8 = 0
x = 4/7

[1] - [2] :
12y - 12 = 0
y = 1

Hence, the point of intersection of AB and A'B' = (4/7, 1)


=====
2.
a)
When f(x) is divided by x - 1, the quotient is 6x² + ax - 19 and the remainderis f(1) = -4
f(x) ÷ (x - 1) = 6x² + ax - 19 ...... remainder = -4
Hence, f(x) = (x - 1)(6x² + ax - 19) - 4

Since x - 3 is a factor of f(x), then f(3) = 0
[(3) - 1] [6(3)² + a(3) - 19)] - 4 = 0
2(54 + 3a - 19) - 4 = 0
3a + 33 = 0
a = -11

f(x) = (x - 1)(6x² - 11x - 19) - 4
f(x) = 6x³ - 11x² - 19x - 6x² + 11x + 19 - 4
f(x) = 6x³ - 17x² -8x + 15

b)
f(x - 1) = 0
6(x - 1)³ - 17(x - 1)² - 8(x - 1) + 15 = 0
6x³ - 18x² + 18x - 6 - 17x² + 34x - 17 - 8x + 8 + 15 = 0
6x³ - 35x² + 44x = 0
x(6x² - 35x + 44) = 0
x(6x - 11)(x - 4) = 0
x = 0 orx = 11/6 orx = 4


=====
3.
a)
y = -3(x - p)² - 2p + 1
y = (1 - 2p) - 3(x - p)²
Since -3(x - p)² ≤ 0 for all values of x,
Hence, the maximum of y :
1 - 2p = -9
2p - 1 = 9
2p = 10
p = 5

b)
y = -3(x - 5)² - 2(5) + 1
When x = 5, the maximum value of y = -9
Hence, the coordinates of the vertex = (5,-9)


=====
4.
a)
Put x = 0 into the equation of L1 :
5(0) - 2y - 8 = 0
y = -4
Hence, the y-intercept of L1 = -4

Put x = 0 into the equation of L2 :
2(0) + ky + 12 = 0
y = -12/k
Hence, the y-intercept of L2 = -12/k

L1 and L2 have the same y-intercept :
-12/k = -4
4k = 12
k = 3

b)
Slope of L2 = -2/3
Hence, slope of L3 = -2/3

L3 passes through the point (-2, 0) and with slope of -2/3.
Equation of L3 :
y - 0 = (-2/3)(x + 2)
3y = -2x - 4
2x + 3y + 4 = 0
參考: Adam
2012-12-26 8:10 pm
我寫了大慨的步驟,並且在某一些位寫下要注意的地方,希望你會看得明白。不明白可以再問我。(第一題(C)有兩個做法,看你喜歡哪一個)

第一個做法是要兩條線的x值或y值都一樣才做得下去 (例如:L1的7x,L2都要是7x才能用這個方法)


圖片參考:http://imgcld.yimg.com/8/n/HA00132844/o/20121226120817.jpg


收錄日期: 2021-04-16 15:24:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121225000051KK00223

檢視 Wayback Machine 備份