✔ 最佳答案
1.
ta = tb (切線性質, tangent properties)
∠atb + ∠tba + ∠bat = 180° (三角形內角和, ∠s sum of △)
∠tba = ∠bat = x (等腰三角形底角, base ∠s, isos. △)
i.e. 70° + 2x = 180°
x = (180° - 70°)/2 = 55°
2.
ta = tb (切線性質, tangent properties)
x = 52° (等腰三角形底角, base ∠s, isos. △)
y
= 180° - 52° (直線上的鄰角, adj. ∠s on straight line)
= 128°
3.
ta = tb (切線性質, tangent properties)
∠atb + ∠tba + ∠bat = 180° (三角形內角和, ∠s sum of △)
∠tba = ∠bat = x (等腰三角形底角, base ∠s, isos. △)
i.e. 30° + 2x = 180°
x = (180° - 30°)/2 = 75°
ta // aO (切線⊥半徑, tangent ⊥ radius)
i.e. ∠taO = 90°
y = 90° - 75° = 15°
4.
因為 at // cb 和 ac // tb
所以 atbc 是一個平行四邊形(// gram)
則 ∠bat = ∠cab = x (平行四邊形對角線互相平分, diagonals of //gram)
又, at = tb (切線性質, tangent properties)
∠atb + ∠tba + ∠bat = 180° (三角形內角和, ∠s sum of △)
∠tba = ∠bat = x (等腰三角形底角, base ∠s, isos. △)
i.e. 60° + 2x = 180°
x = (180° - 60°)/2 = 60°