Math F.4 Log
{ }表示BASE
1. 2x+1 = log{base 3}(31(3^x)-36)
2. log{base 7}x + log{base x}49 = 3
3. 4 log{base x}27 - 3log{base 3}x = 5
4. 2 log{base x}5 + 8log{base 25}x = 9
回答 (2)
1.
2x+1 = log{base 3}(31(3^x)-36)
3^(2x+1)=31(3^x)-36
0=3(3^x)^2-31(3^x)+36
3^x=9 或 3^x=4/3
x=2 或 x=log(4/3)/log3
x=2 或 x=0.262
2.
logx /log7+ log49 /logx= 3
logx/log7 + 2log7/logx=3
[(logx)^2+2(log7)^2]/(log7logx)=3
(logx)^2+2(log7)^2=3log7logx
(logx)^2-3log7logx+2(log7)^2=0
logx=1.69019608 或 log x=0.84509804
x=49 或 x=7
3.
4 log{base x}27 - 3log{base 3}x = 5
12log3/logx-3logx/log3=5
12(log3)^2-3(logx)^2=5logxlog3
-3(logx)^2-5logxlog3+12(log3)^2=0
logx=-1.431363764 或 logx=0.636161673
x=0.0370 或 x=4.33
4.
2 log{base x}5 + 8log{base 25}x = 9
2log5/logx+4logx/log5=9
2(log5)^2+4(logx)^2=9logxlog5
4(logx)^2-9logxlog5+2(log5)^2=0
logx=2.3561638 或 logx=0.11438362
x=227 或 x=1.30
收錄日期: 2021-04-30 17:14:27
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121208000051KK00345
檢視 Wayback Machine 備份