✔ 最佳答案
F=sin(xy)+xsin(y)=>
dF/du=Fx(Xu)+Fy(Yu)=>
dF/du=[ycos(xy)+sin(y)](2u)+
[xcos(xy)+xcos(y)]v=>
dF/du=2u{uvcos[(u^2+v^2)uv]+
sin(uv)}+v{(u^2+v^2)cos[(u^2+v^2)uv]+
(u^2+v^2)cos(uv)}
When u=0,v=1
dF/du=cos(0)+cos(0)=2
Similarly, you can find dF/dv yourself.