Integration by Substitution

2012-12-03 1:34 am
∫〖x^3 (x^2+1)^(3/2) dx〗, find the indefinite integral.

回答 (2)

2012-12-03 3:02 am
✔ 最佳答案
∫x^3*(x^2+1)^(3/2)*dx=0.5∫x^2*(x^2+1)^(3/2)*d(x^2)=0.5∫x^2*(x^2+1)^1.5*d(x^2+1)=0.5∫(x^2+1-1)*(x^2+1)^1.5*d(x^2+1)=0.5∫[(x^2+1)*(x^2+1)^1.5-(x^2+1)^1.5]*d(x^2+1)=0.5∫[(x^2+1)^2.5-(x^2+1)^1.5]*d(x^2+1)=0.5*[(x^2+1)^3.5/3.5-(x^2+1)^2.5/2.5]+c=(x^2+1)^2.5*[(x^2+1)/7-1/5]+c=(x^2+1)^2.5*[5*(x^2+1)-7]/35+c

2012-12-02 19:05:01 補充:
=(x^2+1)^2.5*[5x^2+5-7]/35+c

=(x^2+1)^2.5*(5x^2-2)/35+c...........ans


收錄日期: 2021-05-01 22:59:50
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121202000010KK03711

檢視 Wayback Machine 備份