Maths 概率一題(超急)

2012-11-22 3:13 am
By choosing 4 different numerals from the ten numerals 0 to 9, how many
4-digit numbers that are divisible(整除) by 5 can be formed?

超急, THX!!!!!
更新1:

中文版: 在0-9中選一組4位數字, 能被5整除, 能產生多少個組合?

回答 (2)

2012-11-22 3:34 am
✔ 最佳答案
Case 1 :The last digit is 0 , the first 3 digits is a permutation of 1 to 9.1 * 9P3 = 1 * 9 * 8 * 7 = 504 numbers can be formed.
Case 2 :The last digit is 5 ,
the first digit is not 0 (i.e. The 8 possible number are 1 to 4 and 6 to 9) , then the second and the third digits is a permutation of 0 and other 7 numbers excluding the first digit. (total 8 posssible numbers again)1 * 8P1 * 8P2 = 1 * 8 * 8*7 = 448 numbers can be formed.
Total 504 + 448 = 952 numbers can be formed.

2012-11-23 11:20 pm
我的--
1000-1995(每五有一)=1005,1010,1015,1020,1025,1030,1035,1040,1045,1050,
1055,1060,1065,1070,1075,1080,1085,1090,1095(十九個),x10=190(1000-2000),
190X9=1710(may be),or
雨後陽光的的中文版--
回答者: ☂雨後陽光☀ ( 知識長 )的中文版
案例1:
最後一個數字是0,第3個數字是1〜9中的一個置換。
1x9P3= 1x 9 x8x7= 504號碼可以形成。
案例2:
最後一位數字是5,
第一個數字是不為0(即8個可能的數目是1〜4和6至9),那麼第二和第三位是0的置換及其他7號碼不包括第一個數字。 (共8 可能的數字)
1 x8P1x8P2= 1x 8 x8x7= 448號碼可以形成。
共有504+448 =952號碼可以形成。
can i help you?
sorry,我寫可能侵犯版權,我請合法版權持有人致我本人,我在此致歉!
sorry,sorry,sorry,sorry,sorry,sorry,sorry,sorry,sorry,sorry,sorry,sorry,sorry,sorry,sorry
e-mail, [email protected]
參考: me,and雨後陽光的中文版( Google 翻譯)


收錄日期: 2021-04-24 23:10:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121121000051KK00291

檢視 Wayback Machine 備份