Math 技巧

2012-11-22 2:13 am
I) 2^2011/13 (without Calculator)


2) x^(2)+y^(2)=1
then find the maximum value of 2x+5y^(2)
更新1:

How to calculate?(最快)

更新2:

=>-2????? 可不可解釋?please!

回答 (2)

2012-11-22 6:28 am
✔ 最佳答案
1)
What you want is to calculate (2^2011)/13 or the remainder of it?

If it is a matter of remainder,
find a form to represent 2^2011 in (13A + 1)^n or (13A - 1)^n
where A is an integer, and with the help of binomial theorem,
the remainder could be found easily.
(here A could be 5, 315 ... etc)

2^2011
= 2^[6(335) + 1]
= 2(2^6)^335
= 2(64)^335
= 2(65 - 1)^335 <- easy to express?
= 2{ (65)^335 + (335C1)[(65)^334](-1)^1 + (335C2)[(65)^333](-1)^2 + ... + (-1)^335 } ...(i)

In (i), all the elements are divisible by 13 except the last term
since 65 = 13*5 is divisible by 13.

i.e.
(i) = 2(13M + (-1)^335] , where M is an integer
= (13)(2M) - 2
= (13)(2M - 1) + 13 - 2
= (13)(2M - 1) + 11
i.e. remainder = 11
---
in case that A = 315:

2^2011
= 2^[12(167) + 7]
= (2^7)(2^12)^167
= 128(4096)^167
= 128(4095 + 1)^167 <- here's what we want!
= 128{ 4095^167 + (167C1)(4095^166) + (167C2)(4095^165) + ... + 1)} ...(ii)

Similarly, 4095 = 13*315 is divisible by 13.

(ii) = 128(13N + 1) , where N is an integer
= 13(128N) + 128
= 13(128N) + 13(9) + 11
= 13(128N + 9) + 11
i.e. remainder = 11
- - - - - -
2)
x^2 + y^2 = 1^2
Change it into cylindrical system
i.e. [ρcos(φ)]^2 + [ρsin(φ)]^2 = ρ^2
we have ρ = 1
x = ρcosφ = cosφ
y = ρsinφ = sinφ

2x + 5y^2
= 2cosφ + 5sin^2(φ)
= 2cosφ + 5[1 - cos^2(φ)]
= -5[cos^2(φ) - (2/5)cosφ - 1]
= -5[(cosφ - 1/5)^2 - (1/5)^2 - 1]
= -5[(cosφ - 1/5)^2 - 26/25]
= -5(cosφ - 1/5)^2 + 26/5

i.e.
maximum of 2x + 5y^2
= 0 + 26/5
= 26/5

Easily seen that max of -5(cosφ - 1/5)^2 is zero (when cosφ = 1/5)
If not, see here:
-1 < cosφ < 1
-6/5 < cosφ - 1/5 < 4/5
0 < (cosφ - 1/5)^2 < 36/25
0 < 5(cosφ - 1/5)^2 < 36/5
-36/5 < -5(cosφ - 1/5)^2 < 0
-2 < -5(cosφ - 1/5)^2 + 26/5 < 26/5
參考: Myself
2012-11-22 3:59 am
Math 技巧
I) 2^2011/13的餘數 (withoutCalculator)
Sol
2^2011
=>(2^6)^335*2
=>(64)^335*2
=>(65-1)^336*2
=>(-1)^335*2
=>-2
=>11

2) x^2+y^2=1 then find the maximum value of 2x+5y^2
Sol
Set x=Sinw,y=Cosw
A=2x+5y^2=2sinw+5Cos^2 w
=2Sinw+5(1-Sin^2 w)
=-5Sin^ w+2Sinw+5
=-5(Sin^2 w-0.4Sinw)+5
=-5(Sin^2 w-0.4Sinw+0.04)+5.2
=-5(Sinw-0.2)^2+5.2
-1<=Sinw<=1
-1.2<=Sinw-0.2<=0.8
0<=(Sinw-0.2)^2<=1.44
0<=5(Sinw-0.2)^2<=7.2
-7.2<=-5(Sinw-0.2)^2<=0
-2<=-5(Sinw-0.2)^2+5.2<=5.2
-2<=2x+5y^2<=5.2




收錄日期: 2021-04-30 17:11:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121121000051KK00248

檢視 Wayback Machine 備份