m2 differentiation

2012-11-17 11:17 pm
1. show that g(x) = x^2 / (1+x^2) is an increasing function for all x > 0

2. show that g(x) = x [(1+x^2)^1/2 ] is a strictly increasing function for all real values of x

3. show that g(x) = 5e^(-2x) is a strictly decreasing function for all real values of x

回答 (2)

2012-11-18 12:34 am
✔ 最佳答案
1.g'(x)=d/dx(x^2/(1+x^2))
=((1+x^2)(2x)-(x^2)(2x))/(1+x^2)^2
=2x/(1+x^2)^2
when x>0,g'(x)>0
g(x)is an increasing function for all x>0
2.g'(x)=d/dx(x(1+x^2)^(1/2))
=x(1/2(1+x^2)^(-1/2))(2x)+(1+x^2)^(1/2)
=x^2(1+x^2)^(-1/2)+(1+x^2)^(1/2)>0
g(x)is a strictly increasing function for all real values of x.
3.g'(x)=d/dx5e^(-2x)
=5e^(-2x)(-2)
=-10e^(-2x)<0
g(x)is a strictly decreasing function for all real values of x.
參考: me
2012-11-18 12:14 am
1) g(x) = 1 - 1/(1 + x^2)

g'(x) = 2x/(1 + x^2)^2 > 0 for all positive x and hence g is strictly increasing

2) g'(x) = (1 + x^2)^1/2 + x^2/(1 + x^2)^1/2 which is positive for all real x, so g is strictly increasing

3) g'(x) = -10e^-2x which is negative for all real x, so g is strictly decreasing.


收錄日期: 2021-04-13 19:06:47
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121117000051KK00199

檢視 Wayback Machine 備份