微積分導數

2012-11-02 6:39 am
求y=cotx在x=π/4之切線方程式

求d/dt{cos^2【cos(cost)】}

回答 (2)

2012-11-02 4:10 pm
✔ 最佳答案
求y=Cotx在x=π/4之切線方程式
Sol
y=Cotx
y’=-Csc^2 x
y-Cot(π/4)=-Csc^2 (π/4)(x-π/4)
y-1=-2(x-π/4)

求d/dt{Cos^2【Cos(Cost)】}
Sol
dCos^2【Cos(Cost)】/dt
={dCos^2【Cos(Cost)】/dCos【Cos(Cost)】}* {dCos【Cos(Cost)】/d【Cos(Cost)】}
* dCos(Cost)/ dCost*dCost/dt
=2Cos【Cos(Cost)】*{-Sin【Cos(Cost)】}*[-Sin(Cost)]*(-Sint)
=-2Cos【Cos(Cost)】*Sin【Cos(Cost)】*Sin(Cost)*Sint
=-Cos{Sin【2Cos(Cost)】}*Sin(Cost)*Sint


2012-11-02 8:15 am
斜率 y' = -csc^2 x = -1/sin^2 π/4 =-2
x=π/4 , y=cotπ/4 =1 =>切點(π/4 ,1)
=> 切線方程式 y-1 =-2(x-π/4)


收錄日期: 2021-05-02 10:44:23
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121101000016KK07466

檢視 Wayback Machine 備份