Geometry problem - Circle

2012-10-30 7:38 am
PQRS is a cyclic quadrilateral, and A is any point on PQ. A circle through the points P, A and R cuts RS produced at B.

Prove that BA//SQ

回答 (1)

2012-10-31 3:59 pm
✔ 最佳答案
Let PAQ produce and BSR produce to meet at point X.
Angle XQR = Angle PSR ( ext. angle of cyclic quad.)
Join PR.
Angle RQS = Angle RPS ( angles in the same segment of circle PQRS)
So angle XQS = angle XQR + angle RQS = angle PSR + angle RPS.... (1)
Angle QAB + Angle BAP = 180 (adj. angles on a st. line)
Angle PSR + angle RPS + angle SRP = 180 ( angle sum of triangle)
So angle QAB + angle BAP = angle PSR + angle RPS + angle SRP
But angle BAP = angle SRP (angle in the same segment of circle PARB)
Therefore, angle QAB = angle PSR + angle RPS .............. (2)
From (1) and (2)
angle XQS = angle QAB
so QS//AB ( corresponding angle equal)


收錄日期: 2021-04-13 19:04:42
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121029000051KK00772

檢視 Wayback Machine 備份