Cyclic quad. problem!!!!!!!!!!

2012-10-29 6:22 am
我有條數唔識prove 佢地係concyclic points
唔該大家幫幫手
相入面ge 第21題 thanks
http://www.flickr.com/photos/89327970@N06/8131050098/in/photostream

回答 (1)

2012-10-30 8:07 pm
✔ 最佳答案
Join AD, OC, BC

For quad ADPQ,
angle PQA = 90 (given)
angle PDA = 90 (angle in semi-circle)
so quad ADPQ is cyclic quad. (opp. angles are supp.)

Let angle PAD = x,
then angle PQD = x (angle in same segment) . . . (i)

For quad BCPQ,
angle BQP = 90 (given)
angle BCP = 90 (angle in semi-circle)
so quad BCPQ is also cyclic quad. (opp. angles are supp.)

angle PQC
= angle PBC (angle in same segment, for quad BCPQ)
= angle PAD (angle in same segment for quad ABCD)
= angle PQD (proved in (i))
therefore, PQ bisects angle DQC

angle COD
= 2 * angle CAD . . . . . . . . . (angle at center = twice angle at circumference)
= 2x . . . . . . . . . . . . . . . . . .(angle CAD = x, assumption)
= angle PQD + angle PQC . .(proved)
= angle CQD
therefore, OQCD are concyclic points. (converse of angle in same segment)


收錄日期: 2021-04-13 19:04:55
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121028000051KK00739

檢視 Wayback Machine 備份