✔ 最佳答案
設 f(x) = px² + qx + r
f(a) = a⁴
pa² + qa + r = a⁴ ...... [1]
f(b) = b⁴
pb² + qb + r = b⁴ ...... [2]
f(c) = c⁴
pc² + qc + r = c⁴ ...... [3]
[1] - [2] :
p(a² - b²) + q(a - b) = a⁴ - b⁴
p(a - b)(a + b) + q(a - b) = (a - b)(a + b)(a² + b²)
p(a + b) + q = (a + b)(a² + b²)
p(a + b) + q = a³ + a²b + ab² + b³ ...... [3]
[2] - [3] :
p(b² - c²) + q(b - c) = b⁴ - c⁴
p(b - c)(b + c) + q(b - c) = (b - c)(b + c)(b² + c²)
p(b + c) + q = (b + c)(b² + c²)
p(b + c) + q = b³ + b²c + bc² + c³ ...... [4]
[3] - [4] :
p[(a + b) - (b + c)] = (a³ - c³) + (a²b - bc²) + (ab² - b²c)
p(a - c) = (a - c)(a² + ac + c²) + b(a - c)(a + c) + b²(a - c)
p = a² + ac + c² + b(a + c) + b²
p = a² + b² + c² + ab + bc + ac
Put p = a² + b² + c² + ab + bc + ac into [3] :
(a² + b² + c² + ab + bc + ac)(a + b) + q = a³ + a²b + ab² + b³
(a² + b² + c² + ab + bc + ac)(a + b) + q = (a + b)(a² + b²)
q = (a + b)(a² + b²) - (a + b)(a² + b² + c² + ab + bc + ac)
q = -(a + b)(c² + ab + bc + ac)
q = -(a + b)[(bc + c²) + (ab + ac)]
q = -(a + b)[c(b + c) + a(b + c)]
q = -(a + b)(b + c)(a + c)
Put p = a² + b² + c² + ab + bc + ac and q = -(a + b)(b + c)(a + c) into [1] :
(a² + b² + c² + ab + bc + ac)a² - (a+ b)(b + c)(a + c)a + r = a⁴
a⁴ + (b² + c² + ab + bc + ac)a² - (a+ b)(b + c)(a + c)a + r = a⁴
r = (a + b)(b + c)(a + c)a - (b² + c² + ab + bc + ac)a²
r = (a³b + a³c + a²b² + a²c² + 2a²bc + ab²c + abc²) - (a³b + a³c + a²b² + a²c²+ a²bc)
r = a²bc + ab²c + abc²
r = abc(a + b + c)
f(x)= (a² + b² + c² + ab + bc + ac)x² - (a + b)(b + c)(a + c)x + abc(a + b + c)
2012-11-01 01:35:24 補充:
題目說 f(x) 最高二次,故此 設 f(x) = px² + qx + r
2012-11-01 01:36:12 補充:
請解釋「用x4次方減很多算式」是甚麼?
2012-11-03 02:27:52 補充:
這是三元一次方程式,而用上一些因式分解的公式而已。
參考: wanszeto, wanszeto, wanszeto