有條三角學ge方程唔識解,唔該曬啦!!

2012-10-24 2:57 am
4sinxcosx=3tan2x-6tan2xsin²x,其中0≤x≤2π。(答案以π表示)

回答 (1)

2012-10-24 9:39 am
✔ 最佳答案
4sinxcosx =3tan2x-6tan2x sin²x
2sin2x =3tan2x-6tan2x sin²x
2sin2x =3tan2x(1-2sin²x)
2sin2x =3tan2x cos2x
2sin2x /cos2x =3tan2x
2tan2x =3 tan2x

x = 0, π or 2π (Answer)

When x = 0
4sin(0)cos(0) =3tan2(0)-6tan2(0) sin²(0)
4(0)( π/4) = 3(0)-6(0) (0)
0 = 0

When x = π
4sin(π)cos(π) =3tan(2π)-6tan(2π) sin²( π)
4(0)( -1) = 3(0)-6(0) (0)
0 = 0

When x = 2π
4sin(2π)cos(2π) =3tan(4π)-6tan(4π) sin²(2π)
4(0)(1) = 3(0) -6(0)(0)
0 = 0



收錄日期: 2021-04-11 19:16:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121023000051KK00570

檢視 Wayback Machine 備份