微績分lim 尋求詳細解答

2012-10-19 9:34 am
麻煩幫忙詳解(要有過程),謝謝。
lim X^2﹝1/X﹞
x→0
更新1:

﹝﹞是高斯符號

回答 (3)

2012-10-19 3:42 pm
✔ 最佳答案
lim(x->0)_(x^2[1/x])=?
Sol
lim(x->0+)_(x^2/[1/x])
=lim(y->∞)_([y]/y^2)
lim(y->∞)_(y/y^2)<=lim(x->0+)_(x^2/[1/x])<=lim(y->∞)_(y+1)/y^2
lim(x->0+)_(x^2/[1/x])=0
lim(x->0-)_(x^2/[1/x])
=lim(y->-∞)_([y]/y^2)
lim(y->-∞)_(y-1)/y^2<=lim(x->0-)_(x^2/[1/x])<=lim(y->-∞)_y/y^2
lim(x->0-)_(x^2/[1/x])=0
lim(x->0)_(x^2[1/x])=0


2012-10-20 5:18 am
Since x-1 <[x] <= x for all x in R,
we have 1/x -1 < [1/x ] <= 1/x, and
x^2(1/x-1)<=x^2* 1/x.
= > x(1-x) < x^2[x] <=x......(1)
take lim x->0,
the left side of (1) =0,and
the right side of (1)=0.
Hence, lim x^2 [x]=0 by The Squeeze theorem.

2012-10-19 21:18:38 補充:
Ref. WIKI:
﹝﹞是高斯符號 參考:
http://en.wikipedia.org/wiki/Floor_and_ceiling_functions
之 Equivalences 部分第3式。

http://zh.wikipedia.org/wiki/高斯符號

The Squeeze theorem(夾擠原理) 參考:
http://en.wikipedia.org/wiki/Squeeze_theorem

http://zh.wikipedia.org/wiki/夾擠定理
2012-10-19 12:33 pm
lim(x→0) X^2﹝1/X﹞
=limit(x->0)[x^2/x]
=x
=0


2012-10-19 14:08:25 補充:
lim(x→0)x^2=0

limit(x->0)[1/x]=[1/0.000.....1]=1/0=∞

所以x^[1/x]=0/∞=0


收錄日期: 2021-05-02 10:44:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121019000010KK00438

檢視 Wayback Machine 備份