S2 maths ~

2012-10-15 2:24 am
Please give me all the steps and answers , thank you :)

Find the value or Q in the follwing identities , where they are constants .

1. 3Py+(p-1)≡6y+Q

2. (4x-1)(x-A)≡4x^2+Bx-3

3. P/x+2 + Q/x-2 ≡ 4/x^2-4

thank you so much
更新1:

3. P/(x+2)+Q/(x-2)≡4/(x^2-4)

更新2:

sorry我打錯字 Find the value of A , B , C , P or Q in the follwing identities , where they are constants .

回答 (2)

2012-10-15 5:28 am
✔ 最佳答案
The question is not clear```````P/x+2 is different to P/(x+2)

1. 3Py+(p-1)≡6y+Q
3Py-6y≡Q-P+1
(3P-6)y≡Q-P+1
y=(Q-P+1)/(3P-6)
2. (4x-1)(x-A)≡4x^2+Bx-3
4x^2+4Ax-x+A≡4x^2+Bx-3
4Ax-x-Bx≡-3-A
(4A-B-1)x≡-(3+A)
x≡-(3+A)/(4A-B-1)
3. P/(x+2) + Q/(x-2) ≡ 4/(x^2-4)
P(x-2)+Q(x+2)≡ 4 ( X (x^2-4) of both side, as (x^2-4)=(x+2)(x-2) )
Px+Qx-2P+2Q ≡ 4
(P+Q)x ≡ 4+2P-2Q
x ≡ (4+2P-2Q)/(P+Q)

bracket of the last step of answer is not need when write as fraction
2012-10-15 4:50 pm
1. 3Py+(p-1)≡ 6y+Q
3P=6,
P=2//
Q=P-1=1//

2. (4x-1)(x-A)≡ 4x^2 +Bx -3
4x^2+(-1-4A)x + A ≡ 4x^2 +Bx -3
A=-3//
(-1-4A)=B
[-1-4(-3)]=B
B=11//

3. P/(x+2) +Q/(x-2)≡ 4/(x^2-4)
P(x-2)/[(x+2)(x-2)]+Q(x+2)/[(x+2)(x-2)]≡ 4/(x^2-4)
P(x-2)+Q(x+2)=4
(P+Q)x-2P+2Q=4
P+Q=0..........(1)
2(-P+Q)=4................(2)
From (1), sub P=-Q into (2)
2(Q+Q)=4
4Q=4
Q=1//
P=-1//




收錄日期: 2021-04-24 09:49:18
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121014000051KK00516

檢視 Wayback Machine 備份