✔ 最佳答案
Resolve [4x(x+4)]/[(x^2-4)(x+2)] into a partial fraction
Sol
[4x(x+4)]/[(x^2-4)(x+2)]=[4x(x+4)]/[(x-2)(x+2)^2]
Set
[4x(x+4)]/[(x^2-4)(x+2)]=a/(x-2)+b/(x+2)+c/(x+2)^2
4x(x+4)=a(x+2)^2+b(x-2)(x+2)+c(x-2)
when x=-2
4*(-2)*2=c(-2-2)
c=4
4x^2+16x=a(x+2)^2+b(x-2)(x+2)+4x-8
4x^2+12x+8=a(x+2)^2+b(x-2)(x+2)
4x+4=a(x+2)+b(x-2)
when x=-2
-8+4=b(-2-2)
b=1
4x+4=a(x+2)+x-2
3x+6=a(x+2)
a=3
So
[4x(x+4)]/[(x^2-4)(x+2)]=3/(x-2)+1/(x+2)+4/(x+2)^2