partial fraction

2012-10-13 1:29 am
Resolve [4x(x+4)] / (x^2 - 4) (x+2) into a partial fraction.

回答 (1)

2012-10-13 1:54 am
✔ 最佳答案
Resolve [4x(x+4)]/[(x^2-4)(x+2)] into a partial fraction
Sol
[4x(x+4)]/[(x^2-4)(x+2)]=[4x(x+4)]/[(x-2)(x+2)^2]
Set
[4x(x+4)]/[(x^2-4)(x+2)]=a/(x-2)+b/(x+2)+c/(x+2)^2
4x(x+4)=a(x+2)^2+b(x-2)(x+2)+c(x-2)
when x=-2
4*(-2)*2=c(-2-2)
c=4
4x^2+16x=a(x+2)^2+b(x-2)(x+2)+4x-8
4x^2+12x+8=a(x+2)^2+b(x-2)(x+2)
4x+4=a(x+2)+b(x-2)
when x=-2
-8+4=b(-2-2)
b=1
4x+4=a(x+2)+x-2
3x+6=a(x+2)
a=3
So
[4x(x+4)]/[(x^2-4)(x+2)]=3/(x-2)+1/(x+2)+4/(x+2)^2








收錄日期: 2021-04-30 16:58:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121012000051KK00293

檢視 Wayback Machine 備份