三角證明題

2012-10-09 2:37 am
ABC 是一三角形,證明
cos^2 A + cos^2 B + cos^2 C = 1 - 2 cos A cos B cos C
更新1:

感謝螞蟻知識長的解說。 我個人認為過程過於煩複,希望有個比較簡短易懂的。

更新2:

點瞧的解說是比較清楚,兩人的都差不多,等等吧。

回答 (3)

2012-10-12 2:50 am
✔ 最佳答案
RHS
= 1 - 2 cos A cos B cos C
= 1 - [cos(A+B) + cos(A-B)] cos C
= 1 - cos(A+B) cos C - cos(A-B) cos C
= 1 - (1/2)[cos(A+B+C) + cos(A+B-C)] - (1/2)[cos(A-B+C) + cos(A-B-C)]
= 1 - (1/2)cos pi - (1/2)cos(pi - 2C) - (1/2)cos(pi - 2B) - (1/2)cos(2A - pi)
= 1 + 1/2 + (1/2)cos 2C + (1/2)cos 2B + (1/2)cos 2A
= 3/2 + (1/2)(2 cos^2 C - 1) + (1/2)(2 cos^2 B - 1) + (1/2)(2 cos^2 A - 1)
= cos^2 A + cos^2 B + cos^ C
= LHS

2012-10-13 18:54:36 補充:
Sorry, 尾二果行打漏個 2。即
= cos^2 A + cos^2 B + cos^2 C
= LHS
2012-10-11 8:37 pm
這個有沒有比較短?
cos²A+cos²B+cos²C
= ( 1+cos 2A/2 )+( 1+cos 2B/2 )+( 1+cos 2C/2 )
= 3/2+1/2.( cos 2A+cos 2B+cos 2C )
= 3/2+1/2.[2 cos(A+B) cos(A-B) +cos 2C]
= 3/2+1/2.[- 2 cos C cos(A-B) +2 cos² C-1]
= 3/2+1/2.[- 2 cos C(cos(A-B) +cos(A+B))-1]
= 3/2+1/2.[- 2 cos C(2cosAcosB)-1]
= 1 - 2cosAcosB cos C
2012-10-09 3:27 am
ABC 是一三角形,證明
Cos^2 A+Cos^2 B+Cos^2 C=1-2Cos ACos BCos C
Sol^
2CosACosB
=(CosACosB-SinASinB)+(CosACosB+SinASinB)
=Cos(A+B)+Cos(A-B)
=-CosC+Cos(A-B)
Cos^2 A+Cos^2 B+Cos^2 C+2CosACosBCosC
=Cos^2 A+Cos^2 B+Cos^2 C+CosC[-CosC+Cos(A-B)]
=Cos^2 A+Cos^2 B-Cos(A+B)Cos(A-B)
=Cos^2 A+Cos^2 B-(Cos^2 ACos^2 B-SIN^2 ASIN^2 B)
=Cos^2 A+Cos^2 B-[Cos^2 ACos^2 B-(1-Cos^2 A)(1-Cos^2 B)]
=Cos^2 A+Cos^2 B-[Cos^2 ACos^2 B-(1-Cos^2 A-Cos^2 B
+Cos^2 ACos^2 B)]
=Cos^2 A+Cos^2 B-(Cos^2 ACos^2 B-1+Cos^2 A+Cos^2 B-Cos^2 ACos^2 B)
=1
So
Cos^2 A+Cos^2 B+Cos^2 C=1-2Cos ACos BCos C




收錄日期: 2021-04-30 17:04:39
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121008000010KK05025

檢視 Wayback Machine 備份