高微(equality of limit sup)

2012-10-03 3:55 am
Let {x_n} and {y_n} be two real sequences, {y_n} being convergent.
Show that lim(n→∞) sup(x_n+y_n) = lim(n→∞) sup x_n+lim(n→∞)y_n.
更新1:

大大你好, lim sup (x_n - (-y_n)) ≧ lim sup x_n - lim sup (-y_n)是怎麼得到的?

回答 (1)

2012-10-05 4:07 am
✔ 最佳答案
lim sup (x_n+y_n) ≦ lim sup x_n + lim sup y_n


lim sup (x_n - (-y_n)) ≧ lim sup x_n - lim sup (-y_n)但 lim y_n 存在,
故 lim sup y_n = lim y_n 且 lim sup (-y_n) = - lim y_n.因此得
lim sup (x_n+y_n) ≦ lim sup x_n + lim y_n 且
lim sup (x_n+y_n) ≧ lim sup x_n - ( - lim y_n) = lim sup x_n + lim y_n
故等式成立.


2012-10-07 18:42:45 補充:
lim sup a_n = lim sup (a_n-b_n+b_n) ≦ lim sup (a_n-b_n) + lim sup b_n

lim sup (a_n-b_n) ≧ lim sup a_n - lim sup b_n
     (假設右邊兩項不同時為 +∞ 或 -∞)

故得 lim sup (x_n - (-y_n)) ≧ lim sup x_n - lim sup (-y_n)


收錄日期: 2021-05-04 01:51:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121002000010KK05853

檢視 Wayback Machine 備份