integration to evaluate limit

2012-10-02 12:20 am
use integration to evaluate the limit:
lim(n->infinity) {[1/[root(n)*root(n+1)]+[1/[root(n)*root(n+2)]+...+[1/[root(n)*root(n+n)]

(use appropriate Riemann Sum to help)

Thanks..

回答 (2)

2012-10-02 4:29 am
✔ 最佳答案
lim (n->∞) 1/√n(n + 1) + 1/√n(n + 2) + 1/√n(n + 3) + ... + 1/√n(n + n)

= lim (n->∞) (1/n)√[n/(n + 1)] + (1/n)√[n/(n + 2)] + (1/n)√[n/(n + 3)] + ... + (1/n)√[n/(n + n)]

= lim (n->∞) (1/n)√[1/(1 + 1/n)] + (1/n)√[1/(1 + 2/n)] + (1/n)√[1/(1 + 3/n)] + ... + (1/n)√[1/(1 + n/n)]

= ∫ (0->1) 1/(1 + x) dx

= ln |1 + x| |[0,1]

= ln 2


2012-10-02 20:52:46 補充:
Forth line should be

= ∫ (0->1) 1/√(1 + x) dx

= 2√(1 + x) | [0,1]

= 2(√2 - 1)
2012-10-02 8:49 pm
lim (n->∞) (1/n)√[1/(1 + 1/n)] + (1/n)√[1/(1 + 2/n)] + (1/n)√[1/(1 + 3/n)] + ... + (1/n)√[1/(1 + n/n)]

= ∫ (0->1) 1/(1 + x) dx <----- any square root here?


收錄日期: 2021-04-13 19:00:40
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20121001000051KK00391

檢視 Wayback Machine 備份