數學~要詳解~急~

2012-09-20 5:04 am
請問下列哪一種圖形有最多條的對稱軸?
(A)正三角形 (B)非正方形的菱形 (C)非正方形的矩形
(D)等腰梯形 (E)正方形
如果只使用一美分,五美分,十美分與二十五美分的硬幣,阿福至少需要幾個硬幣才能支付任何少於一美元的錢數?(一美元=一百美分)
(A)6 (B)10 (C)15 (D)25 (E)99
有一棵樹比另一棵樹高十六公尺,碩這兩顆樹的高度比為3:4,試問較高那棵樹的高度為多少公尺?
(A)48 (B)64 (C)80 (D)96 (E)112
某個三角形的三邊嘗試三個連續的整數(單位:公分),若最短的邊長是周長的30%,則最長的邊長是多少公分?
(A)7 (B)8 (C)9 (D)10 (E)11
小喬每天到學校要爬一段有六階的樓梯,他每次可以任跨一階兩階或三階,例如:小喬可以先跨三階再跨一階再跨兩階,試問小喬總共有多少種方法爬這段樓梯?
(A)13 (B)18 (C)20 (D)22 (E)24
將201寫成兩個質數a與b和且a<b,試問其方法共有多少種?
(A)0 (B)1 (C)2 (D)3 (E)4
有一個二位數,除以五會餘一,除以六會餘二,除以七會餘二,求此數有幾個?
(A)0 (B)1 (C)2 (D)3 (個)

回答 (4)

2012-09-20 7:46 am
✔ 最佳答案
方括號內的數字是圖形的對稱軸條數
(A)正三角形 [3] (B)非正方形的菱形[2] (C)非正方形的矩形[2]
(D)等腰梯形[1] (E)正方形[4]
答案是 (E)
----------------------------
支付任何少於10美分:4個1美分硬幣+1個5美分硬幣
支付任何少於25美分:4個1美分硬幣+2個5美分硬幣+1個10美分硬幣
支付任何少於100美分:
4個1美分硬幣+2個5美分硬幣+1個10美分硬幣+3個25美分硬幣
至少需要 4+2+1+3=10個硬幣
答案是 (B)
-----------------------------
設高樹的高度為h公尺
(h-16):h=3:4
h=64
答案是 (B)
----------------------------
設最長的邊長是x公分
(x-2)=[x+(x-1)+(x-2)]30%
x=11
答案是 (E)
----------------------------
只用1種跨法:
(跨一階) 1+1+1+1+1+1
(跨二階) 2+2+2
(跨三階) 3+3
共3種

只用2種跨法:
(跨一及二階) 1+1+1+1+2→次序調換後有5種
1+1+2+2→次序調換後有6種
(跨一及三階) 1+1+1+3→次序調換後有4種
(跨二及三階) 不可能
共5+6+4=15種

只用3種跨法:
(跨一及二及階) 1+2+3→次序調換後有6種
共6種

總共有 3+15+6=24種
答案是 (E)
----------------------------
201=a+b,故a、b中奇偶數各一。2是唯一偶奇數,故a=2, b=199
答案是 (B)
-----------------------------
有一個二位數,除以五會餘一,除以六會餘二,除以七會餘二,求此數有幾個?
(A)0 (B)1 (C)2 (D)3 (個)
設此數為n.
n除以6會餘2,除以7會餘2,故n-2同時被6及7整除
∴n-2=42, 84
n=44, 86
n除以5會餘1,∴n=86
答案是 (B)
2014-09-07 7:48 am
到下面的網址看看吧

▶▶http://*****
2012-09-20 7:03 am
請問下列哪一種圖形有最多條的對稱軸?
(A)正三角形 →3條
(B)非正方形的菱形→2條
(C)非正方形的矩形→2條
(D)等腰梯形 →1條
(E)正方形 →4條(這題 自己畫圖就可以了吧)
Ans:(E)

如果只使用一美分,五美分,十美分與二十五美分的硬幣,阿福至少需要幾個硬幣才能支付任何少於一美元的錢數?(一美元=一百美分)
(A)6 (B)10 (C)15 (D)25 (E)99
令一物品須付99美分=25*3+10*2+1*4(3+2+4=9)
→至少需要9個硬幣→取接近值10
Ans:(B)

有一棵樹比另一棵樹高十六公尺,碩這兩顆樹的高度比為3:4,試問較高那棵樹的高度為多少公尺?
(A)48 (B)64 (C)80 (D)96 (E)112
設A樹高X公尺,B樹高X+16公尺
X:X+16=3:4
3X+48=4X(內項=外項成積)
X=48,B樹高48+16=64公尺
Ans:(B)

某個三角形的三邊嘗試三個連續的整數(單位:公分),若最短的邊長是周長的30%,則最長的邊長是多少公分?
(A)7 (B)8 (C)9 (D)10 (E)11
令三邊長為x-d.x.x+d
x-d=30/100 * (x-d+x+x+d)
x-d=0.9x
d=0.1x→三邊長為(0.9x).(x).(1.1x)→三邊長比9:10:11(最長邊為11,因邊長為整數)
Ans:(E)

小喬每天到學校要爬一段有六階的樓梯,他每次可以任跨一階兩階或三階,例如:小喬可以先跨三階再跨一階再跨兩階,試問小喬總共有多少種方法爬這段樓梯?
(A)13 (B)18 (C)20 (D)22 (E)24
(1.1.1.1.1.1)→1種
(1.1.1.1.2) →5種
(1.1.2.2) →5種
(2.2.2) →1種
(1.1.1.3) →4種
(3.3) →1種
(1.2.3) →6種
1+5+5+1+4+1+6=23(如果扣除題目所敘述的方法,則餘22種)
Ans:(D) (這題 我有點不會@@")

將201寫成兩個質數a與b和且a<b,試問其方法共有多少種?
(A)0 (B)1 (C)2 (D)3 (E)4
奇+奇=偶
奇+偶=奇
偶+偶=偶
→201=奇+偶=2+199(只有1組解)
Ans:(B)

有一個二位數,除以五會餘一,除以六會餘二,除以七會餘二,求此數有幾個?
(A)0 (B)1 (C)2 (D)3 (個)
找5.6公倍數,除7餘1=120
找5.7公倍數,除6餘1=175
找6.7公倍數,除5餘1=126
找出三數後,乘以除數的餘數(有點饒口)
120*2+175*2+126*1=716
[5.6.7]=210
716-3*210=86(根據''孫子定理'')(只有一組解)
Ans:(B)
============================================================
希望有幫到你的忙~
如有錯誤敬請見諒~
如有問題可以再問~
請求不要刪除發問~(樓梯那題我在想一下)
2012-09-20 6:11 am
請問下列哪一種圖形有最多條的對稱軸?
(E)正方形

如果只使用一美分,五美分,十美分與二十五美分的硬幣,阿福至少需要幾個硬幣才能支付任何少於一美元的錢數?(一美元=一百美分)
(B)10

有一棵樹比另一棵樹高十六公尺,碩這兩顆樹的高度比為3:4,試問較高那棵樹的高度為多少公尺?
(B)64

某個三角形的三邊嘗試三個連續的整數(單位:公分),若最短的邊長是周長的30%,則最長的邊長是多少公分?
(E)11

小喬每天到學校要爬一段有六階的樓梯,他每次可以任跨一階兩階或三階,例如:小喬可以先跨三階再跨一階再跨兩階,試問小喬總共有多少種方法爬這段樓梯?
(D)22

將201寫成兩個質數a與b和且a<b,試問其方法共有多少種?
(B)1

有一個二位數,除以五會餘一,除以六會餘二,除以七會餘二,求此數有幾個?
(B)1

2012-09-19 23:18:22 補充:
請問下列哪一種圖形有最多條的對稱軸?
(A)正三角形 3條對稱軸
(B)非正方形的菱形 2條對稱軸
(C)非正方形的矩形2條對稱軸
(D)等腰梯形 1條對稱軸
(E)正方形4條對稱軸………故選E
如果只使用一美分,五美分,十美分與二十五美分的硬幣,阿福至少需要幾個硬幣才能支付任何少於一美元的錢數?(一美元=一百美分)
(A)6 (B)10 (C)15 (D)25 (E)99
25分3個
10分2個
5分1個
1分4個
3+2+1+4=10……故選B

2012-09-19 23:20:36 補充:
某個三角形的三邊嘗試三個連續的整數(單位:公分),若最短的邊長是周長的30%,則最長的邊長是多少公分?
(A)7 (B)8 (C)9 (D)10 (E)11
令最長邊為x則三邊為(x-2),(x-1),(x)
(x-2)=30/100[(x-2)+(x-1)+(x)]
(x-2)=3/10(3x-3)
10(x-2)=3(3x-3)
10x-20=9x-9
X=11……故選E

2012-09-19 23:22:27 補充:
小喬每天到學校要爬一段有六階的樓梯,他每次可以任跨一階兩階或三階,例如:小喬可以先跨三階再跨一階再跨兩階,試問小喬總共有多少種方法爬這段樓梯?
(A)13 (B)18 (C)20 (D)22 (E)24
畫樹狀圖得
111111(每次跨1階)
11112(前4次跨1階最後跨2階)以下類推
11121,1113,11211,1122,1131,12111,1212,1221,123,1311,132
21111,2112,213,2211,222,3111,312,321,33
以上共22種……故選D

2012-09-19 23:22:48 補充:
將201寫成兩個質數a與b和且a














2012-09-19 23:23:42 補充:
將201寫成兩個質數a與b和且a






2012-09-19 23:24:38 補充:
有一個二位數,除以五會餘一,除以六會餘二,除以七會餘二,求此數有幾個?
(A)0 (B)1 (C)2 (D)3 (個)
除以五會餘一(被除數-4可整除)
除以六會餘二(同上)
5,6公倍數=30,60,90
30-4=26(除以七會餘5)
60-4=56(除以七會餘0)
90-4=86(除以七會餘2)……故選B

2012-09-19 23:25:04 補充:
將201寫成兩個質數a與b和且a






2012-09-19 23:29:43 補充:
將201寫成兩個質數a與b和且a






2012-09-19 23:31:08 補充:
奇數+奇數=偶數(所以201=偶數+奇數)
又因為2為質數當中唯一偶數
因此2為唯一符合條件之偶數
故201=2+199……故選B

2012-09-19 23:33:35 補充:
不知道為甚麼補充詳解都秀不出來希望你看的懂


收錄日期: 2021-05-03 04:58:22
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120919000015KK07360

檢視 Wayback Machine 備份