Show that
(a) ((x_n)^2 - √3)/x_n → -1+√3 as n → ∞.
(b) Show that there exists a constant C<0 and an integer N∈N such that
x_n<C<0 whenever n≥N.
--------
這裡的(a)雖然一看就知道了,但是我想用definition of convergence去做
x_n → -1 as n →∞:
∀ε>0 ∃N∈N, s.t. if n≥N, then |(x_n)+1|<ε
然後原來的式子
| ((x_n)^2 - √3)/x_n - (-1+√3) |=|(x_n-√3)/x_n|*|(x_n)+1|, 做到這裡就停下來了
----------
請大大們幫忙,謝謝~!
更新1:
大大你好 There exists N1 such that whenever n≧N1 then |x_n-x|<|x|/2, so |x_n|>|x|/2 |x_n|>|x|/2 是如何推導出來的?