✔ 最佳答案
1/1+1/[1+(1+2)]+1/[1+(1+2)+(1+2+3)]+............+1/[1+(1+2)+.....(1+2+3+...+29+30)]
請問這題可以用 Sigma嗎
那要先做怎樣初步的處理??
Sol
先考慮一般項
1/[1+(1+2)+(1+2+3)+…+(1+2+3+…+k)]
=1/Σ(m=1 tok)_(1+2+,,,+m)
=2/Σ(m=1 tok)_[m(m+1)]
=2/Σ(m=1 tok)_(m^2+m)
=2/[k(k+1)(2k+1)/6+k(k+1)/2]
=2/[k(k+1)/6]*[2k+1+3]
=6/[k(k+1)(k+2)]
=a/k+b/(k+1)+c/(k+2)
6=a(k+1)(k+2)+bk(k+2)+ck(k+1)
when k=0
6=a(1)(2)
a=3
when k=-1
6=b(-1)(1)
b=-6
when k=-2
6=c(-2)(-1)
c=3
1/[1+(1+2)+(1+2+3)+…+(1+2+3+…+k)]
=3/k-6/(k+1)+3/(k+2)
So
1/1+1/[1+(1+2)]+1/[1+(1+2)+(1+2+3)]+............+1/[1+(1+2)+.....(1+2+3+...+29+30)]
=Σ(k=1 to 30)_ Σ1/[1+(1+2)+(1+2+3)+…+(1+2+3+…+k)]
=Σ(k=1 to 30)_ [3/k-6/(k+1)+3/(k+2)]
=(3/1+3/2+3/3+3/4+……+3/27+3/28+3/29+3/30)
-(6/2+6/3+6/4+6/5+…….+6/28+6/29+6/30+6/31)
+(3/3+3/4+3/5+3/6+…..+3/29+3/30+3/31+3/32)
=(3/1)-(3/31)-(3/2)+(3/32)
=1485/992