一元二次方程的根

2012-09-11 7:09 am
=====================================================================

圖片參考:http://imgcld.yimg.com/8/n/HA06399860/o/701209100069313873365670.jpg

=====================================================================

回答 (1)

2012-09-11 8:08 am
✔ 最佳答案
25t² - 12t + (4m² - 3n) < 0 ... (1)
又 (4m + 3)x² + (2m + 5t)x + (t + n/4) = 0 有兩個不相等的實根 : △ = (2m + 5t)² - 4(4m + 3)(t + n/4) > 0
25t² + 20mt + 4m² - (4m + 3)(4t + n) > 0
25t² + 20mt + 4m² - 16mt - 12t - 4mn - 3n > 0
25t² - 12t + (4m² - 3n) > 4mn - 4mt 結合 (1) 得
0 > 25t² - 12t + (4m² - 3n) > 4mn - 4mt
m(t - n) > 0 ... (2)
考慮方程 (m + n)x² + (2m - n + t)x + (m - t) = 0 之判別式 : △ = (2m - n + t)² - 4(m + n)(m - t)
= 4m² + n² + t² - 4mn - 2nt + 4mt - (4m² + 4mn - 4mt - 4nt)
= n² + t² + 2nt - 8mn + 8mt
= (n + t)² + 8m(t - n) > 0 ... [由 (2)]
∴ (m + n)x² + (2m - n + t)x + (m - t) = 0 有二實根。


收錄日期: 2021-04-13 18:58:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20120910000051KK00693

檢視 Wayback Machine 備份